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ABSTRACT
Previous studies suggest that human frontoparietal network represents feature-based attentional
priority, yet the precise nature of the priority signals remains unclear. Here, we examined whether
priority signals vary continuously or discretely as a function of feature similarity. In an fMRI experi-
ment, we presented two superimposed dot fields moving along two linear directions (leftward and
rightward) while varying the angular separation between the two directions. Subjects were cued to
attend to one of the two dot fields and respond to a possible speed-up in the cued direction. We used
multivariate analysis to evaluate how priority representation of the attended direction changes with
feature similarity. We found that in early visual areas as well as posterior intraparietal sulcus and
inferior frontal junction, the patterns of neural activity becamemore different as the feature similarity
decreased, indicating a continuous representation of the attended feature. In contrast, patterns of
neural activity in anterior intraparietal sulcus and frontal eye field remained invariant to changes in
feature similarity, indicating a discrete representation of the attended feature. Such distinct neural
coding of attentional priority across the frontoparietal network may make complementary contribu-
tions to enable flexible attentional control.
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Goal-directed attention is critical to adaptive behavior in
a complex environment. It biases the neural representa-
tion among sensory stimuli (Desimone & Duncan, 1995;
Kastner & Ungerleider, 2000), rendering task-relevant
features or objects to attain processing priority. While
much has been learned regarding the neural representa-
tion of spatial priority (Bisley & Goldberg, 2010; Ptak,
2012; Silver & Kastner, 2009), how the brain represents
feature-based priority remains less understood.

Previous research has shown that attending to
a feature modulates neural activity in early visual areas,
for example, by enhancing (or suppressing) activity in
neurons tuned to the attended (or unattended) features
(Martinez-Trujillo and Treue, 2004). More recent studies
have further shown that activity in frontoparietal areas
also exhibits feature-specific modulations. For example,
human fMRI studies have shown that neural activity
patterns can be used to decode the attended feature
in both visual and frontoparietal areas (Greenberg,
Esterman, Wilson, Serences, & Yantis, 2010; Kamitani &
Tong, 2006; Liu, Hospadaruk, Zhu, & Gardner, 2011;
Serences & Boynton, 2007). Previous work thus indicates
that feature-based priority is represented at multiple
levels of the visual processing hierarchy. An important
open question is whether this multi-level representation

of feature-based priority accomplishes specialized or
similar functions during attentional selection.

In the broad literature on brain information proces-
sing, an overarching framework is that sensory informa-
tion is processed along hierarchical stages starting with
analog representations and gradually progressing to
more abstract representations (Deco & Rolls, 2004;
Hochstein & Ahissar, 2002; Riesenhuber & Poggio,
1999). Thus, neural representations in early visual areas
should reflect fine-grained information of sensory sti-
muli, whereas different frontoparietal areas may repre-
sent sensory stimuli at different levels of abstractness.
Although these areas did not exhibit obvious functional
differences in previous studies (nor was that the aim of
these studies), it is possible that their contributions to
attentional selection are different and complementary.
To assess the level of abstractness in their representa-
tions of attentional priority, we examined how neural
signals tracks feature similarity along the frontoparietal
network. The rationale is that more abstract representa-
tions should be tuned less to changes in physical proper-
ties but more to high-level information such as task rules
and choice categories (Freedman, Riesenhuber, Poggio,
& Miller, 2001; Li, Ostwald, Giese, & Kourtzi, 2007;
Swaminathan & Freedman, 2012).
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In a functional magnetic resonance imaging (fMRI)
study, we presented two superimposed moving dot fields
(leftward and rightward) at the same location and cued
subjects to selectively attend to one of the directions. The
feature similarity was manipulated by varying the angular
separation (30°, 90°, 150°) between the two motion direc-
tions. We performed multivariate analyses to assess the
similarity between neural signals associated with attend-
ing to leftward and rightward directions. Thus, within
each angular separation, the physical stimulus was kept
constant while only attentional instructions varied, such
that neural effects should reflect attentional modulations.
Across angular separations, we examined the influence of
feature similarity on multivariate measures of attentional
modulation. If a brain area represents the attended fea-
ture in a continuous way, the neural patterns should be
tuned to feature similarity, such that the neural patterns
would become more different for large angular separa-
tion (attend +75° vs. attend -75°) than small angular
separation (attend +15° vs. attend -15°). Alternatively, if
a brain area represents the attended feature in a discrete
way, the neural patterns should be tuned to abstract
information (leftward vs. rightward), such that the pat-
terns would be invariant to the feature similarity. Our
results showed both continuous and discrete representa-
tions of the attended feature in different sub-regions of
the frontoparietal network, suggesting functionally spe-
cialized neural coding of feature-based attentional prior-
ity along the cortical hierarchy.

Materials and methods

Participants

Twelve individuals (six females) participated in the
experiment. We based our sample size on previous stu-
dies using similar attention tasks (Baldauf & Desimone,
2014; Guo, Preston, Das, Giesbrecht, & Eckstein, 2012;
Jigo, Gong, & Liu, 2018; Liu & Hou, 2013). All had normal
or corrected-to-normal vision. Eleven were right-handed
and one was left-handed. One of the participants was
the author (MG) and the rest were undergraduate and
graduate students at Michigan State University.
Participants were paid for their participation at $20/hr
and gave informed consent according to the study pro-
tocol approved by the Institutional Review Board at
Michigan State University.

Stimuli and apparatus

Stimuli
Stimuli were generated using MGL (http://gru.stanford.
edu/mgl), a set of custom OpenGL libraries implemented

in Matlab. The stimulus aperturewas an annulus with an
inner radius of 1.5° and an outer radius of 6°, centered on
the fixation cross on a black background. In the aperture,
two superimposed dot fields were presented (dot size: 0.1°,
density: 2.5 dots/degree2). One of the dot fields moved
along the leftward direction, while the other one moved
along the rightward direction. The two motion directions
were equally offset from the upward direction. There were
three offset conditions that varied in the angular separa-
tions between the two directions: 30°, 90°, and 150° (see
Figure 1(a)). When a dot moved out of the aperture, it was
wrapped around to reappear from the opposite side along
its motion direction.

Display
The stimuli were presented on a CRT monitor (resolution:
1024 × 768, refresh rate: 60 Hz) in the behavioral practice
session. Participants were stabilized with a chinrest
and viewed the display from a distance of 91 cm in a dark
room. During the fMRI scans, stimuli were projected on
a rear-projection screen located in the scanner bore by
a Hyperion MRI Digital Projector (Psychology Software
Tools, Sharpsburg, PA). The resolution and refresh rate
were the same as the CRT monitor. Participants viewed
the screen via an angled mirror attached to the head coil
at a viewing distance of 60 cm.

Eye tracking
To evaluate the stability of fixation, we monitored each
participant’s eye position during the task in the practice
session. Six of the 12 participants had their eyes mon-
itored inside the scanner as well. We used an Eyelink
1000 system (SR Research) to record the right eye in
both the practice and scanning sessions. The eye track-
ing data were analyzed offline using custom Matlab
code.

Experimental design

Task
Participants were cued to attend one of the motion
directions and to perform a speed-up detection task
(Figure 1(a)). At the beginning of each trial, an arrowhead
(←, →) was presented for 0.5 s that instructed the partici-
pants to attend either leftward or rightward direction. The
two superimposed dot fields were then presented for 6.1 s,
which was followed by a fixation display varying from
4.4 s to 8.8 s (in a step size of 2.2 s). During the stimulus
display, a brief speed increment lasting for 0.3 s appeared
at a random interval (ranging from 1.5 to 5.8 s after the
stimulus onset). The onsets of the speed-up were rando-
mized independently for twomotion directions. Thus, each
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speed-up trial contained either a single speed-up in one of
the motion directions or two speed-ups separately in each
direction. Participants were instructed to respond to the
speed-up in the attended direction by pressing a button
and ignore the speed-up in the unattended one. A correct
response was defined as a button press within 1.5 s after
the onset of speed-up in the cued direction. We presented
a colored dot at the center for 0.3 s immediately after
a response was made. A green dot indicated a fast
(<1.1 s after speed-up onset) and accurate response,
a yellow dot indicated a slow (1.1–1.5 s after speed-up
onset) and accurate response. An incorrect response
including a false alarm or miss (>1.5 s after a speed-up)
was indicated by a red dot.

Before the scanning session, we trained partici-
pants to become familiar with the task in a separate
practice session. The magnitude of speed increment
for each angular separation was adjusted by best
PEST, as implemented in the Palamedes Toolbox
(Prins and Kingdon 2009), to maintain the perfor-
mance level at 71%. The proportion of speed-up trials

in the practice session was 50% to accelerate the
convergence of threshold estimates. The proportion
of speed-up trials in the scanning session was set at
20% as our main fMRI analysis was based on trials
without speed-ups. Participants were made aware of
the proportion of speed-ups in both sessions.

Design
There were two within-subject factors: attended direc-
tion (leftward vs. rightward direction) × angular separa-
tions (30°, 90°, 150°). Each run contained five trials per
condition (30 trials per run). Each participant completed
at least 5 runs in the practice session and 11 runs in the
scanning session.

MRI data acquisition

Imaging was performed on a GE Healthcare 3 T Sigma
HDx MRI scanner, equipped with an eight-channel head
coil, in the Department of Radiology at Michigan State
University. For each participant, high-resolution

a

b c

Figure 1. Trial sequence and behavioral results in the attention task. (a) The arrow cue indicated the attended motion direction
(leftward vs. rightward) in the subsequent display, which was comprised of two superimposed moving dot fields. There were three
possible angular separations between two motion directions: 30°, 90°, and 150° (shown on the right). The depicted trial is a ‘attend
to leftward’ trial. The white circles demarcate the annulus-shaped aperture of the dots; they were not shown in the actual stimuli.
(b) Task performance across the conditions of angular separation, as indexed by the threshold. (c) Proportion of hit and false alarm
trials. Error bars are within-subject standard errors (s.e.m.), using the method by Cousineau (2005).
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anatomical images were acquired using a T1-weighted
magnetization-prepared rapid-acquisition gradient
echo sequence (field of view, 256 × 256 mm; 180
sagittal slices; 1 mm isotropic voxels). Functional
images were acquired using a T2* – weighted echo
planar imaging sequence (repetition time, 2.2 s; echo
time, 30 ms; flip angle, 78°; matrix size, 64 × 64; in-plane
resolution,
3 × 3 mm; slice thickness, 4 mm, interleaved, no gap).
Thirty axial slices covering the whole brain were col-
lected. In each scanning session, we also acquired a 2D
T1-weighted anatomical image that had the same slice
prescription as the functional scans but with higher in-
plane resolution (0.75 × 0.75 × 4 mm). The image was
used to align the functional data to the high-resolution
anatomical images for each participant.

Retinotopic mapping

For each participant, we ran a separate scanning session
of retinotopicmapping. To define visual and parietal areas
that showed topographic organization, participants
viewed four runs of rotating wedges (i.e., clockwise and
counterclockwise) and two runs of rings (i.e., expanding
and contracting) to map the polar angle and radial com-
ponents, respectively (DeYoe et al., 1996; Engel, Glover, &
Wandell, 1997; Sereno et al., 1995). Borders between areas
were defined as the phase reversals in a polar angle map
of the visual field. Phase maps were visualized on compu-
tationally flattened representations of the cortical surface,
which were generated from the high-resolution anatomi-
cal image using FreeSurfer (http://surfer.nmr.mgh.har
vard.edu) and custom Matlab code.

To help identify the topographic areas in parietal areas,
we ran 2–4 runs ofmemory-guided saccade task developed
in previous studies (Sereno, Pitzalis, & Martinez, 2001;
Schluppeck et al. 2006; Konen and Kastner 2008b).
Participants fixated at the screen center while a peripheral
(~10° radius) target dot was flashed for 500ms. The flashed
target was quickly masked by a ring of 100 distractor dots
randomly positioned within an annulus (8.5–10.5°). The
mask remained on screen for 3 s, after which participants
were instructed tomake a saccade to thememorized target
position, then immediately saccade back to the central
fixation. Thepositionof theperipheral target shiftedaround
the annulus from trial to trial in either a clockwise or coun-
terclockwise order. Data from the memory-guided saccade
task were analyzed using the same phase encoding
method as the wedge and ring data.

In addition, one run consisted of alternating moving
versus stationary dots was used to localize the motion-
sensitive area, MT+, an area near the junction of the
occipital and temporal cortex (Watson et al., 1993).

Therefore, the following regions of interest (ROIs) in
each hemisphere were identified after the completion of
this session: V1, V2, V3, V3A/B, V4, V7, MT+, IPS1 to IPS4.

fMRI data analysis

Preprocessing
Data analyses were performed using mrTools (http://
www.cns.nyu.edu/heegerlab/wiki/doku.php?id=mrtools:
top) and custom code in Matlab. For each run, functional
datawerepreprocessedwithheadmotion correction, linear
detrending and temporal highpass filtering at 0.01Hz. Data
were converted to percentage signal change by dividing
the time course of each voxel by its mean signals in each
run. Data from 11 runs were concatenated for further ana-
lysis. Importantly, we analyzed trials without speed-ups and
trials on which participants did not make button press
responses. This yielded on average ~254 trials per partici-
pant (~42 trials per condition).

Univariate analysis: Deconvolution
We used a deconvolution approach by fitting each voxel’s
time series with a general linear model whose regressors
contained six conditions: attended direction (leftward vs.
rightward) × angular separations (30°, 90° or 150°). Each
trial was modeled by a set of 12 finite impulse response
functions (FIR) after the trial onset (26.4 s duration). The
design matrix was pseudo-inversed and multiplied by the
time series to obtain an estimate of the hemodynamic
response (HRF) evoked by each condition.

For each voxel, we computed goodness-of-fit measure
(r2 value), corresponding to the amount of variance
explained by the deconvolution model (Gardner et al.,
2005). The r2 value represents the degree to which the
voxel’s response over time is correlated with the attention
task. The statistical significance of the r2 value was eval-
uated by a permutation test that repeated the deconvolu-
tion analysis with shuffled trial labels (Gardner et al., 2005;
Liu et al., 2011). The p value of each voxel was calculated
as the percentile of voxels from the null (permutated)
distribution that exceeded the observed r2 value. We
selected voxels from the retinotopically defined ROIs
that exceeded the r2 value at a cutoff p value of 0.01. In
addition, we excluded noisy voxels with responses larger
than 10% signal change at any time point in the time
series. The selected voxels were used for both univariate
andmultivariate analysis. The exact exclusion criterion did
not qualitatively impact our results.

Using the r2 value, we defined three additional areas
that were active during the attention task, separately for
each hemisphere: frontal eye field (FEF), inferior frontal
junction (IFJ) and anterior branch of intraparietal areas
that likely corresponds to IPS5, which is anatomically
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anterior and lateral to IPS4 (Konen and Kastner, 2008b;
Wang et al., 2015 ). All ROI-based analyses were performed
in each participant’s native anatomical space. For each ROI
and each condition, we calculated the response amplitude
by averaging a time window of 2.2–15.4 s (2nd to 8th time
points after trial onset) of the deconvolved fMRI responses,
a period of time that the response showed elevated
response above baseline. To visualize the overall activation
pattern during the task, we transformed individual r2 map
to the Population-Average, Landmark- and Surface-based
(PALS) atlas (Van Essen, 2005) using spherical alignment.
We then averaged the maps and thresholded with an r2

value of 0.11 in combination with a cluster constraint of 50
voxels (Figure 2(a)). Note this group analysis was performed
for the purpose of visualization only. To visualize the loca-
tions of frontoparietal ROIs, we overlaid individually
defined ROIs in the atlas surface and displayed the vertices
shared across themajority of the hemispheres (Figure 2(b)).

Multivariate analysis: Voxel selection
Previous research has shown that voxels responding to
the stimulus aperture edge in early visual areas exhibit
a large-scale bias for motion directions (Wang et al. 2014).
To eliminate the contribution of such bias to motion
decoding, we excluded the voxels that responded to the
edge of the apertures in V1 to V3 using the retinotopy
data. For each voxel in these areas, we used its radial

component (acquired from runs of expanding and con-
tracting rings) and polar angle component (acquired from
runs of rotating wedges) to calculate its response field
location (Figure 2(c)). We included voxels whose response
field location was within 2.5–5°, which excluded the inner
and outer edges of the stimulus apertures.

In addition to excluding edge-related voxels in early
retinotopic areas, we also selected active voxels based
on their univariate responses. For each subject, we
selected the same number of voxels with top-ranked
r2 values in each ROI. The exact number of voxel was
individually defined as the minimal number of voxels
across ROIs for that particular subject. This voxel selec-
tion regime controlled for potential biases in multivari-
ate analyses due to varying number of voxels across
regions, and it also took into account the inter-subject
variability in overall ROI sizes. Due to the relatively small
number of voxels in each sub-region of IPS, we com-
bined IPS1 and IPS2 to form a posterior IPS (IPS12), and
combined IPS3 and IPS4 and anterior branch of IPS to
form an anterior IPS (aIPS) according to their functional
similarities (Konen and Kastner 2008a). This criterion
yielded on average 80 voxels per ROI (SD = 20.9) for
the multivariate analyses across subjects. We note that
our results are not sensitive to the exact voxel selection
criterion; the same qualitative results were obtained
with other criteria such as using all voxels per ROI.

Overall activity map

0.11 0.24 0.37 0.50 0.63

r2 value

a

IPS12
IFJ

FEF aIPS

Task-defined ROIs
b

-10

-5

0

5

10

1050-5-10
Horizontal position(°)

V
er

tic
al

po
si

tio
n(

°) > 5°

< 2.5°
2.5-5°

Radial (r) Angular (φ )

c Voxel selection

V1

Figure 2. (a) The group-averaged r2 map shown on an inflated Caret atlas surface. Individual maps were transformed to PALS atlas
space and averaged, which was thresholded at r2 value of 0.11 with a cluster constraint of 50 voxels. (b) Average frontoparietal ROI
locations. For each ROI, the vertices shared by more than half of the hemispheres (n > 6) are displayed. IPS: intraparietal sulcus, FEF:
frontal eye field, IFJ: inferior frontal junction. (c) Voxel selection for multivariate pattern analysis in early visual areas (V1–V3). (Left)
An example of selected voxels in V1 of an individual hemisphere. Each colored dot corresponds to a single voxel’s response field
location in the visual field, which was calculated based on voxels’ angular and radial component estimated from retinotopic
mapping (Right). The voxels represented by green colored dots were included for multivariate analyses, thus excluding voxels
responding to the inner and outer edges of the stimulus annulus (shown by red and black dots, respectively).
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Multivariate analysis: Classification accuracy
For each voxel and each trial, we obtained an fMRI
response amplitude by averaging a time window of
4.4–8.8 s after trial onset (3rd to 5th time points). This
averaging window was used to account for the hemody-
namic delay and avoid signal contribution from adjacent
trials. Note that we chose different time points for uni-
variate and multivariate analysis because these two types
of analysis relied on different data inputs. The univariate
analysis was based on the deconvolved response (with
a GLM model), whereas here we simply extracted time
points corresponding to each trial from the raw time
series for multivariate analysis (e.g., Kamitani & Tong,
2006; Serences & Boynton, 2007). For decoding of atten-
tion, we normalized the response amplitudes across the
two attention conditions (attend leftward vs. attend right-
ward direction) using a z-score, separately for each angu-
lar separation. For decoding of stimulus, we normalized
the response amplitudes across two stimulus conditions
(e.g., 30° and 90°) using z-score, separately for all pairwise
combinations. We applied MVPA on normalized response
amplitudes from trials without manual responses
(~42 trials per condition, see above). We trained the clas-
sifier to discriminate between two attention conditions
(attend leftward vs. attend rightward direction) using the
Fisher linear discriminant analysis.

The discriminant function can be expressed by
a weighted sum of voxel responses plus a bias:

g xð Þ ¼
Xn

i¼1

wixi þ w0

where n is the number of voxels, wi and xi are the
weight and response of the ith voxel, and w0 is the
bias point. We divided the data set into training (10
runs) and testing data (1 run). For each angular separa-
tion, we used the training data to find optimal weights
and bias point for the discriminant function, and then
evaluated the discriminant function on the testing data
in an 11-fold leave-one-run-out cross-validation
scheme. For this analysis, we used classification accu-
racy (i.e., proportion of correctly classified trials aver-
aged across folds) to index neural pattern difference
between the two attention conditions, as a larger pat-
tern difference should yield higher accuracy.

Multivariate analysis: Class separation (via
Mahalanobis distance)
Because classification can be construed as a discretized
readout of the pattern difference on individual trials, it
might affect our ability to evaluate continuous vs. discrete
neural representations by masking subtle pattern

differences. Thus, as a complementary analysis, we calcu-
lated the Mahalanobis distance (Mahalanobis, 1936) to
quantify the class separation between two attention con-
ditions as a function angular separation. Mahalanobis dis-
tance is a continuous measure of pattern difference
between two multivariate distributions (Mahalanobis,
1936), which is similar to Euclidean distance except that
the variance of each voxel and the covariance between
voxels were considered. Similar to the inputs for classifica-
tion, we calculated the Mahalanobis distance on the basis
of normalized response amplitudes. We used data from all
11 runs to calculate a single Mahalanobis distance for each
angular separation condition in each ROI. The (squared)
Mahalanobis distance is defined by

MD2 ¼ ðμ2!� μ1
!ÞT ��1 μ2

!� μ1
!� �

where MD is the Mahalanobis distance, μ1
! and μ2

! are the
mean response vectors of two attention conditions,
T denotes transposition, and ∑ is the combined covariance
matrix for the two conditions. Because the covariance
matrix would be underdetermined with more voxels than
trials, we therefore used a regularized version of the covar-
iance matrix by adding a ridge coefficient to the diagonal
elements of combined covariance matrix (Warton, 2008).

Statistical analysis

Behavior data
For the speed-up detection task, we conducted one-way
repeated-measures analysis of variance (ANOVAs) with
angular separation as the factor. For the eye movement
data, we averaged participants’ eye position during the
stimulus period (0 to 6.6 s) in each trial and conducted two-
way repeated-measures ANOVAs (attended direction ×
angular separation), both for group-level (using mean and
standard deviation of eye position across trials for each
participant) and subject-level (using mean and standard
deviation of eye position across time on each trial) analysis.

Neural data
To test if our experimental manipulation induced
changes in overall BOLD response, we performed two-
way repeated-measures ANOVAs (attended direction ×
angular separation) on the averaged fMRI response
amplitude obtained from univariate analysis. To map
out areas containing attentional signals along the visual
hierarchy, we collapsed data across angular separations
for each brain area and performed separate one-sample
t-tests (against the 0.5 chance-level) on the multivariate
decoding results.
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To characterize the representational properties (contin-
uous vs. discrete) of the attended feature, we performed
one-way repeated-measures ANOVAs (angular separation)
on the two measures of pattern difference (classification
accuracy and class separation) for separate brain areas. To
streamline the data presentation, we aggregated data from
extrastriate visual areas (abbreviated as ExS) by averaging
results across V2, V3, V3A/B, V4, and V7, which did not show
qualitative differences when inspected individually. We
kept V1 and MT+ as separate visual ROIs because of the
importance of former’s role in early visual processing and
the latter’s role in motion processing. We further con-
ducted trend analyses to explore whether the effect of
angular separation can be explained by a linear or quad-
ratic component. As our pre-defined ROIs have been
repeatedly reported in the literature, there are strong priors
for planned statistical tests on these areas. Nevertheless,
our statistical inferences remain essentially the same if we
use the false discovery rate (FDR) method (Benjamini &
Hochberg, 1995) to correct for multiple comparisons across
areas.

We also conducted Bayesian repeated-measures
ANOVA using JASP (JASP team, 2017), particularly for
ROIs that showed invariant activity with respect to
changes in the angular separation. The Bayes factor
(BF01) indexes the strength of evidence that the data
favor the null hypothesis compared to the alternative
hypothesis, as a complement to the p-values in standard
null-hypothesis significance test.

Results

Behavioral performance

Behavioral performance on the speed-up detection task
confirmed that the participants were selectively attending
to one of the dot fields. The task difficulty remained at an
intermediate level across conditions and participants. The
hit rate for speed-up was around 70% and false alarm (FA)
rate was less than 5% (Figure 1(b)). One-way ANOVAs were
performed on multiple behavioral indices across three
angular separations, which showed no significant main
effects for hit rate (F(2,22) = 0.04, p= 0.96), false alarm rate
(F(2,22) = 0.88, p= 0.43), and hit – false alarm rate (F(2,22) =
0.13, p= 0.88). In addition, the speed-up threshold also did
not differ among conditions (F(2,22) = 1.96, p= 0.16). These
results demonstrated that there were no discernible differ-
ences in behavior across angular separations, which is
expected given our experimental design that explicitly
controlled performance with a staircase method.

Univariate analysis: Response amplitude

To determine whether there were any overall modulations
in neural response across conditions, we compared the

mean response amplitude across conditions for each ROI.
Figure 3(a) shows time courses of fMRI response in two
selected regions (V1 and FEF). We observed robust fMRI
responses for all conditions in all areas. In visual areas, there
was a small but systematic modulation such that larger
angular separations tend to evoke larger responses. We
first examined the potential difference between hemi-
spheres and if such a difference interacted with the
attended direction (leftward vs. rightward). We did not
find any statistically reliable effects. Thus for all univariate
results, we collapsed across the two hemispheres and per-
formed two-factor ANOVAs to quantify the effects of angu-
lar separation and attended direction (Figure 3(b)). We
found significant main effects of angular separation in V1
(F(2,22) = 9.64, p< 0.001, ηp

2 = 0.473), ExS (F(2,22) = 7.02, p<
0.001, ηp

2 = 0.552), and MT+ (F(2,22) = 3.65, p= 0.043, ηp
2 =

0.261). In contrast, response amplitude in frontoparietal
areas was not affected by the changes in the angular
separation (p> 0.10 all for frontoparietal areas).
Additionally, neither attended direction (p> 0.36 for all
areas) nor the two-factor interaction (p> 0.24 for all areas)
was significant in any ROIs. To further ascertain if visual and
frontoparietal areas behaved differently in response to the
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regions (V1 and FEF). Error bars denote within-subject s.e.m.
across all time points. (b) Mean fMRI responses in visual and
frontoparietal areas for each condition (attended direction ×
angular separation). Error bars denote within-subject s.e.m.
Significant level for the difference across angular separation is
indicated by symbols (**p< 0.01, * p< 0.05).
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angular separation, we formed two region groups (visual
vs. frontoparietal) by averaging the response amplitude
within visual (V1, ExS and MT+) and frontoparietal (IPS12,
aIPS, FEF, and IFJ) areas. A three-way ANOVA (region group
× angular separation × attended direction) revealed
a significant interaction between region group and angular
separation (F(2,22) = 20.67, p< 0.001, ηp

2 = 0.653), demon-
strating visual areas are more sensitive to changes in angu-
lar separation than frontoparietal areas.

Multivariate analysis: Classification accuracy and
neural separation

We examined the neural representation of atten-
tional priority by decoding the attended feature
from multivoxel response patterns (Kamitani &
Tong, 2006; Liu et al., 2011). Average decoding accu-
racy across angular separations showed above-
chance performance in all ROIs (one sample t-test,
ps<0.019). Thus, our result showed reliable neural
representations of attended feature along the visual
hierarchy, making it meaningful to further test the
modulation of the feature similarity on these repre-
sentations. To facilitate the exposition, below we
present results from the occipital visual areas (V1,
ExS, and MT+) and frontoparietal areas (IPS12, aIPS,
FEF, and IFJ) separately.

Neural pattern difference in visual areas:
Dominance of continuous representation

We used two measures to evaluate pattern difference
as a function of feature similarity: classification accuracy
and class separation (see Materials and Methods for
details). Because of the well-established precise feature
tuning in visual areas, we expected these areas to
exhibit continuous representations (i.e., neural patterns
should become more similar when the angular separa-
tion between the attended directions decreases).

Classification accuracy
We performed separate one-way repeated-measures
ANOVAs across angular separation to test whether fea-
ture similarity impacts the classification accuracy in
each visual ROI (Figure 4(a)). The results showed signifi-
cant effect of angular separation in V1 (F(2,22) = 6.12,
p= 0.008, ηp

2 = 0.357) and ExS (F(2,22) = 5.86, p= 0.009,
ηp

2 = 0.348). Trend analyses in these areas further
revealed significant linear (ps<0.013), but no quadratic
components (ps>0.75), indicating a monotonic relation-
ship between the classification accuracy and angular
separation. There were no significant effects of angular
separation in MT+ (F(2,22) = 2.71, p= 0.089, ηp

2 = 0.198).

Class separation (Mahalanobis distance)
We performed the same repeated-measures ANOVAs to
test the modulation of feature similarity on the class
separation as indexed by Mahalanobis distance. The
results were essentially the same to those from the classi-
fication accuracy (Figure 4(b)). The class separation
increased when the attended features became more dis-
similar in V1 (F(2,22) = 4.73, p= 0.020, ηp

2 = 0.30) and ExS
(F(2,22) = 4.65, p= 0.021, ηp

2 = 0.297). Trend analysis in
these ROIs showed linear (ps<0.04), but no quadratic
component (ps>0.69). There were no significant effects
of angular separation in the MT+ (p= 0.422).

Results from both classification accuracy and class
separation consistently showed an increased pattern dif-
ference with larger angular separation in early visual areas,
consistent with their established role in processing fine-
grained sensory inputs. The trend analysis further demon-
strated that the pattern difference shows a monotonic
increase with angular separation in V1 and ExS. The lack
of feature similarity effect in MT+ is somewhat unexpected
given its prominence in motion processing. However, the
overall classification accuracy in MT+ (57.0%) tended to be
lower than that in visual areas (V1 and ExS) (61.5%), con-
sistent with prior fMRI studies (e.g., Kamitani & Tong, 2006;
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Serences & Boynton, 2007). This has been attributed to the
possibility of closely spaced direction-selective columns in
this area that decreases the spatial inhomogeneity for fMRI-
based pattern analysis (Bartels, Logothetis, & Moutoussis,
2008; Kamitani & Tong, 2006). In addition, it is also possible
that signals in MT+ are dominated by low-level effects
related to motion processing, which could limit our ability
to detect changes in attentional modulations.

Neural pattern difference in frontoparietal areas:
Mixed representation of attentional priority

Classification accuracy
We performed separate one-way repeated-measures
ANOVAs to test whether feature similarity impacts the
classification accuracy in parietal (IPS12 and aIPS) and
frontal (FEF and IFJ) ROIs. This analysis revealed
a significant main effect of angular separation in IPS12
(F(2,22) = 7.03, p= 0.004, ηp

2 = 0.390) and IFJ (F(2,22) =
5.13, p= 0.015, ηp

2 = 0.318), which can be accounted by
a linear trend (ps<0.006), but not a quadratic trend
(ps>0.69). However, decoding in aIPS and FEF were
not influenced by the changes in angular separations
(ps>0.28). These results suggest functional distinctions
in frontoparietal areas, which was further supported by
a direct test for interactions across subregions in this
network: a two-way repeated-measures ANOVA (ROI ×
angular separation) showed a significant interaction
effect (F(6,66) = 3.64, p = 0.004, ηp

2 = 0.249).

Class separation (Mahalanobis distance)
The repeated-measures ANOVAs on the class separation
revealed a significant increase when the attended feature
became more dissimilar in IPS12 (F(2,22) = 4.79, p= 0.019,
ηp

2 = 0.30) and IFJ (F(2,22) = 4.59, p= 0.022, ηp
2 = 0.294).

Again, the trends of the effects in IPS12 and IFJ were linear
(ps<0.02), not quadratic (ps>0.53). The class separation in
aIPS and FEF were little affected by the angular separa-
tions (ps>0.22). The same two-way repeated-measures
ANOVA (ROI × angular separation) was conducted on
the class separation and showed a significant interaction
effect (F(6,66) = 3.08, p = 0.01, ηp

2 = 0.219).

Bayesian analysis
We further used the Bayesian approach (Wagenmakers,
2007) to assess the relative evidence between the null
and alternative hypotheses in areas that showed a lack
of effect of angular separation: aIPS and FEF. Bayesian
repeated-measures ANOVAs were performed in each of
these ROIs for both classification accuracy and class
separation (see Materials and Methods). As quantified

by BF01, the null model was preferred to the alternative
model in aIPS (classification accuracy: 4.89; class separa-
tion: 4.06) and FEF (classification accuracy: 13.08; class
separation: 7.44). The Bayesian analysis thus offered
support for the invariance of attentional signals across
levels of feature similarity in these areas.

Neural representation of attention was not
contributed by stimulus sensitivity

Although we used superimposed stimuli to equate sen-
sory inputs and only varied attention instructions within
each angular separation, the effect of feature similarity
was assessed by comparing across different stimuli, which
could introduce stimulus-driven effect in our measure of
attentional priority. Specifically, the observed difference
between continuous and discrete representations of
attentional priority could be related to differential sensi-
tivity to stimulus information across areas, such that areas
more sensitive to stimulus difference also exhibit a more
continuous representation of attentional priority. To test
this possibility, we conducted an additional analysis that
compared stimulus decoding across areas and focused on
frontoparietal areas showing continuous (IPS12 and IFJ)
and discrete (aIPS and FEF) representations.

We performed explicit stimulus decoding by training
a classifier to decode between physical stimuli, for stimulus
pairs of high similarity (30° vs. 90° and 90° vs. 150°) and low
similarity (30° vs. 150°). We averaged the two attention con-
ditions for each stimulus for this analysis. For example, when
classifying 30° vs. 90°, we averaged BOLD response for
attend +15° and attend -15° conditions to obtain data for
30°, andweaveragedattend+45° andattend -45° conditions
to obtain data for 90°. Because we averaged data from the
two attention conditions, feature-specific attention effect
should be averaged out and results should reflect stimulus-
driven effects. Neural signals sensitive to stimulus difference
should show a difference in decoding accuracy for low
similarity and high similarity conditions. Indeed, we
observed higher decoding accuracies for low vs. high simi-
larity in all areas (Figure 5(a), paired t-tests, ps<0.01), demon-
strating the sensitivity to stimulus information.We thus used
this difference to index neural sensitivity to stimulus differ-
ence, and compared average difference in three ROI groups:
visual areas (V1, ExS and MT+), frontoparietal areas with
continuous (IPS12 and IFJ) and discrete representation
(aIPS and FEF) of attentional priority (Figure 5(b)). One-way
repeated-measures ANOVA revealed a significant main
effect of ROI group (F(2,22) = 14.92,
p<0.01, ηp

2 = 0.576). Visual areas exhibited a higher stimulus
sensitivity than frontoparietal areas (ps<0.02), which is
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expected because of the fine feature tuning in these areas.
Critically, continuous areas showed lower stimulus sensitivity
than discrete areas (p = 0.013). Thus, although frontoparietal
areas all exhibited somedegree of stimulus sensitivity, differ-
ential sensitivity cannot explain the observed difference in
continuous vs. discrete representation of attentional priority.

Eye movement cannot account for the fMRI results

To examine whether any differences in eye movement
patterns can explain our results, we analyzed the partici-
pants’mean eye position and spread of fixation (as quan-
tified by the standard deviation of fixations) in both the
training session and scanning session (see Materials and
Methods). For group-level analysis, a two-factor ANOVA
(attended direction × angular separation) on the mean
and standard deviation of fixation position showed
neither significant main effects nor interaction in either
session (ps>0.17 for all analysis). We also conducted simi-
lar analysis for each individual subject on trial-level data.
None of the subjects showed significant differences
across conditions (ps>0.10 for all comparisons). We thus
conclude that eye movement cannot account for our
observed fMRI results.

Discussion

Previous studies have highlighted the neural representa-
tion of attentional priority of features along the cortical
hierarchy (e.g., Ibos & Freedman, 2014; Jigo et al., 2018; Liu
et al., 2011). In the present study, we addressed whether
the functions of frontoparietal regions are specialized or
similar during attentional selection. By characterizing the
distributed neural activity (using both classification accu-
racy and class separation) as a function of feature similar-
ity, we identified two distinct profiles of attentional

priority signals in frontoparietal areas. In posterior IPS
(IPS12) and IFJ, neural pattern difference increased when
the attended features became more distinct, indicating
a continuous representation of attentional priority. Similar
effects were also found in visual areas (V1 and ExS).
Conversely, in more anterior parts of IPS and FEF, neural
pattern difference remained constant regardless of the
changes in feature similarity, indicating a discrete repre-
sentation of attentional priority. The functional dissocia-
tion across sub-regions of frontoparietal areas suggests
two complementary ways that the brain uses to represent
feature-based attentional priority. We further ruled out
the possibility that our findings were contributed by dif-
ferent degrees of stimulus sensitivity across brain areas.

We found that the mean fMRI BOLD amplitude was
sensitive to changes in the similarity between the two
directions (30°, 90° and 150° separation) in visual areas,
but not in frontoparietal areas. In visual areas, when the
two directions became more distinct, the compound sti-
mulus likely activated more distinct subpopulations of
direction-selective neurons, leading to an overall larger
BOLD response. This reflected a pure stimulus-driven
effect and was absent in frontoparietal areas where neu-
rons were less tuned to physical properties of the stimu-
lus. That themean response amplitude reflected stimulus-
driven effect was also supported by the observation that it
was insensitive to the attended direction (leftward vs.
rightward). However, information about the attended
direction, or attentional priority, can be decoded from
the distributed pattern of neural activity, consistent with
previous studies (Kamitani & Tong, 2006; Liu, 2016; Liu
et al., 2011; Serences & Boynton, 2007).

We found attentional priority in visual areas, as mea-
sured by the multivariate decoding, was modulated by
feature similarity, such that the neural patterns became
more different with larger angular separations. This is
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likely caused by attentional modulation occurring on
more distinct direction-selective neuronal subpopulations
at larger angular separations, which led to more distinct
spatial activity patterns. We note that MT+ did not show
such a modulation, which could be related to its overall
low decoding accuracy due to the anatomical organiza-
tion and/or the relative contribution of stimulus-driven vs.
attentional effects in this area (see Results). The continu-
ous representation of the attended features in visual areas
is in linewith the general framework that neurons in visual
areas encode precise visual properties and subject to
attentional modulation, whereas the source of such top-
down modulations likely resides in control regions, such
as areas in the frontoparietal cortex (Bisley & Goldberg,
2010; Kastner & Ungerleider, 2000). Our finding of mixed
neural signals with both continuous and discrete repre-
sentations for feature-based priority thus suggests
a further fractionation of functions in this network.

In posterior IPS and IFJ, we found neural signals that
coded for physical variations of attended features, in
a similar manner as those observed in visual areas. These
findings are consistentwith the role of posterior IPS as a key
integrator of top-down and bottom-up information (Bisley
& Goldberg, 2010) during attentional selection, which may
be functionally associated with the build-up of precise
attentional templates that enables the efficient selection
among similar items, as has been demonstrated to be
behaviorally feasible (Navalpakkam & Itti, 2006). Previous
work from others and our lab has provided some support
for this potential neural-behavioral link for posterior IPS
(Law and Gold, 2008; Jigo et al., 2018). Previous studies
havealso supported ageneral role of IFJ in cognitive control
(Brass, Derrfuss, Forstmann, & von Cramon, 2005; Zanto,
Rubens, Bollinger, & Gazzaley, 2010), with more recent
studies identifying IFJ as a source of feature and object-
based selection (Baldauf & Desimone, 2014; Bichot, Heard,
DeGennaro, & Desimone, 2015; Zhang, Mlynaryk, Ahmed,
Japee, & Ungerleider, 2018). Our results extend the function
of IFJ by showing the continuous representation of
attended feature in this area. This coding property may
make IFJ an ideal region for sending top-down signals for
particular features. Thus, despite similar representations in
posterior IPS and IFJ, their exact roles may differ in terms of
the source of attentional control.

In contrast to the results from posterior IPS and IFJ, the
distributed neural activity in anterior parts of IPS and FEF
exhibited discrete coding for the attended feature, sug-
gesting that other regions in frontoparietal network are
primarily tuned to abstract but not physical attributes of
the attended feature. Given that the neural activities in
these high-order areas were susceptible to task demand
(Duncan, 2001; Miller & Cohen, 2001; Vaziri-Pashkam & Xu,
2017; Woolgar, Hampshire, Thompson, & Duncan, 2011),

task-specific goals or rules may well drive neural popula-
tions to represent more abstract information of the sti-
muli. For example, studies on category learning have
shown these areas exhibit category selectivity indepen-
dent of physical features (Freedman et al., 2001; Li et al.,
2007; Swaminathan & Freedman, 2012). It is thus worth-
while to note that our findings of discrete signals in ante-
rior IPS and FEF likely reflect an automatic abstraction of
the attended feature because the task itself only requires
simple speed detection without explicit categorization. In
addition, the discrete coding cannot be explained by
stimulus-response mapping, because the same response
key was used for both attention conditions. Lastly, we
conducted multivariate analyses only on trials without
speed-ups and manual responses, further eliminating
contributions from target-detection and motor response.
The finding of discrete coding is consistent with the role
of frontoparietal areas in mediating abstract, high-order
cognitive control (Badre, 2008; Miller & Cohen, 2001). Such
discrete representation could be useful in reducing the
processing redundancy and enhancing the generalizabil-
ity of abstract codes to other stimuli that share category-
like similarity. Although we intentionally minimized pos-
sible mappings of stimuli onto explicit categories in the
current task, an abstract, discrete neural code can still be
useful in situations with clear alternatives (attend leftward
vs. rightward directions). For example, representing
ranges of directions as distinct categories may allow prior-
ity signals to be easily ‘read out’ by downstream areas
which could facilitate attentional control.

A number of previous studies have examined the nature
of neural representations in frontoparietal areas and have
reached apparently different conclusions. For example,
feature-independent coding of object was found in visual
search (Guo et al., 2012) and face identification tasks (Jeong
& Xu, 2016), whereas the continuous coding of orientation
was reported in a working memory task (Ester, Sprague, &
Serences, 2015) and an orientation discrimination task
(Ester, Sutterer, Serences, & Awh, 2016). These studies differ
greatly in stimuli, task, and analytic approaches, and thus it
is difficult to pinpoint the factor that contributed to the
discrepant findings. Although our study is not designed to
reconcile these findings, here we offer a potential explana-
tion based on task demand across these studies. It is pos-
sible that the task requiring precise recall of memorized
item or fine discrimination in Ester et al. (2015, 2016)
engagedmore regions to encode detailed feature informa-
tion to improve sensitivity, whereas detecting a target
among distracters (Guo et al., 2012; Jeong & Xu, 2016)
may sway these areas to code more abstract information
pertaining to task goals. Because these latter studies did
not manipulate feature similarity, it is possible that contin-
uous feature coding co-exists with abstract

COGNITIVE NEUROSCIENCE 57



representations, as observed in our study. The present
study thus extends the literature by showing both types
of neural coding in frontoparietal areas, which could
endow brain networks to adjust information processing
flexibly across a variety of tasks. We also note that the
distinction between continuous and discrete representa-
tion could very well reflect two extremes on a continuous-
to-discrete continuum. Further research is needed to exam-
ine the influence of task factors on the form and the
transition of neural representations in frontoparietal
network.

In summary, our findings provide novel evidence for
a mixture of continuous and discrete priority signals in
frontoparietal network during feature-based attentional
selection, revealing functional specializations in this well-
studied network. This functional organization is desirable
because invariance to physical changes could benefit the
stable representation and recognition of stimuli, while
sensitivity to fine-grained information allows selection
of precise feature values, thus providing complementary
representations of attentional priority to facilitate adap-
tive behavior in a dynamic environment.
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