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a b s t r a c t

Humans can attend to different objects independent of their spatial locations. While selecting an object

has been shown to modulate object processing in high-level visual areas in occipitotemporal cortex,

where/how behavioral importance (i.e., priority) for objects is represented is unknown. Here we

examined the patterns of distributed neural activity during an object-based selection task. We

measured brain activity with functional magnetic resonance imaging (fMRI), while participants viewed

two superimposed, dynamic objects (left- and right-pointing triangles) and were cued to attend to one

of the triangle objects. Enhanced fMRI response was observed for the attention conditions compared to

a neutral condition, but no significant difference was found in overall response amplitude between two

attention conditions. By using multi-voxel pattern classification (MVPC), however, we were able to

distinguish the neural patterns associated with attention to different objects in early visual cortex

(V1 to hMTþ) and lateral occipital complex (LOC). Furthermore, distinct multi-voxel patterns were also

observed in frontal and parietal areas. Our results demonstrate that object-based attention has a wide-

spread modulation effect along the visual hierarchy and suggest that object-specific priority informa-

tion is represented by patterned neural activity in the dorsal frontoparietal network.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Attention helps us selectively process information in complex
visual scenes. Visual attention can be directed towards spatial
locations (Posner, 1980; Treisman & Gelade, 1980), feature
properties such as color or orientation (Maunsell & Treue, 2006;
Saenz, Buracas, & Boynton, 2002). There is also considerable
behavioral evidence for object-based attention, an ability to select
whole perceptual objects, often independent of their spatial
locations (Blaser, Pylyshyn, & Holcombe, 2000; Duncan, 1984;
Kanwisher & Driver, 1992). Object-based attention is important
because objects tend to be the focus of our perceptual awareness
and also the target of our action. Object-based selection is
particularly necessary when different objects occupy similar
location (e.g., due to occlusion).

Previous functional magnetic resonance imaging (fMRI) stu-
dies have revealed enhanced response in higher-level object-
selective regions (e.g., fusiform face area and lateral occipital
complex) during object-based selection (Murray & Wojciulik,
2004; O’Craven, Downing, & Kanwisher, 1999; Serences,
Schwarzbach, Courtney, Golay, & Yantis, 2004). Recent studies
ll rights reserved.
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using neural pattern analyses also revealed identity- and
category-specific population responses during visual search tasks
in these areas (Peelen, Fei-Fei, & Kastner, 2009; Peelen & Kastner,
2011; Zhang et al., 2011). Although the majority of studies on
object-based attention have focused on high-level visual areas,
neurophysiological studies using a curve tracing task have
demonstrated a modulation of neuronal activity due to object-
based selection in early visual cortex such as V1 (Khayat,
Spekreijse, & Roelfsema, 2006; Roelfsema, Lamme, & Spekreijse,
1998). However, there is a lack of neuroimaging evidence on
whether object-based attention can modulate early visual activity
in human cortex.

Furthermore, and more importantly for the present study,
although previous studies have documented the effects of
object-based attention on visual cortex, the nature of the top-
down control signals for object-based selection is unknown. Here
we hypothesized that if people can select different objects
behaviorally, there should be neural signals representing the
behavioral importance for selected objects, i.e., attentional prior-
ity, that exert top-down modulation on sensory representations.
Using a similar logic, studies on spatial attention have suggested
the dorsal frontal and parietal areas in both humans and monkeys
encode priority information for spatial locations (Bisley &
Goldberg, 2010; Silver, Ress, & Heeger, 2005; Thompson &
Bichot, 2005). These areas (frontal eye field and lateral intra-
parietal area in monkeys and their human analog) contain
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topographic maps of the visual space which provide spatial
frameworks to exert top-down retinotopic-specific modulation.
However, a pure spatial priority signal is not sufficient to explain
selection of stimuli that share the same spatial location (e.g.,
superimposed objects). Indeed, we have shown in a recent study
(Liu, Hospadaruk, Zhu, & Gardner, 2011) that these areas also
contain motion and color-selective responses during feature-
based selection. This observation suggests that the dorsal frontal
and parietal areas encode priority information for not only spatial
locations, but also for visual features. In this study, we further test
whether these areas encode more abstract, non-spatial priority
signals for visual objects.

We conducted an fMRI experiment in which participants
viewed a compound stimulus including two spatially superim-
posed objects and performed a detection task on one of the
objects. A conventional univariate analysis identified brain areas
active during object-based selection compared to a baseline
condition. Furthermore, using multivariate pattern analysis we
found distinct neural patterns for different attended objects in
both dorsal frontoparietal areas and the visual cortex. A control
experiment ruled out contribution from spatial attention. These
results suggest that the dorsal frontoparietal areas represent
priority information for selected objects and modulate object
processing in the visual cortex.
2. Material and methods

2.1. Participants

Six individuals (two females) participated in the main experiment; all had

normal or corrected-to-normal vision. Two of the participants were authors, the

rest were graduate and undergraduate students at Michigan State University.

Four individuals (one female) participated in the control experiment, two of whom

also participated in the main experiment, including one author. All participants

were given informed consent according to the study protocol that was approved

by the Institutional Review Board at Michigan State University. Participants were

compensated at the rate of $25 per scanning session.

2.2. Stimuli and display

The stimuli were composed of two superimposed equilateral triangles (2.17–

4.331 in length per side, 0.151 edge in thickness, luminance: 18.2 cd/m2) presented

on a dark background (0.01 cd/m2). The triangles were centered at fixation and

were oriented such that one pointed to the left and the other one pointed to the

right (see Fig. 1). All the stimuli were generated using MGL (http://gru.brain.

riken.jp/doku.php?id¼mgl:overview) running in Matlab (Mathworks, Natick, MA).

Images were projected on a rear-projection screen located in the scanner bore by

a Toshiba TDP-TW100U projector outfitted with a custom zoom-lens (Navitar,

Rochester, NY). The screen resolution was set to 1024�768 and the display was

updated at 60 Hz. Participants viewed the screen via an angled mirror attached to

the head coil at a viewing distance of 60 cm.

2.3. Design and procedure

2.3.1. Main experiment: Task and procedure

Two triangles centered around a fixation cross expanded and contracted in a

counter-phase fashion, i.e., when one triangle increased in size the other

decreased in size and vice versa (Fig. 1A). The white fixation cross (width:

0.251) was displayed in the center of the screen throughout the experiment.

Participants were cued to attend to either the triangle with a left-pointing vertex

(T1), the triangle with a right-pointing vertex (T2), or the fixation (null). At the

beginning of each trial, an arrow cue (‘‘’’’, ‘‘-’’, ‘‘2’’) was presented for 500 ms,

which indicated participant to attend to T1, T2, or the fixation. Trials were 19.8 s

long, with the order pseudo-randomized such that the first trial in a run was

always a null trial and each trial type followed/preceded each other trial type

equally often. Each scanning run contained 5 trials of each type, for a total of 15

trials (297 s/run). In addition, an 8.8 s fixation period was presented at the

beginning of the run whose imaging data were subsequently discarded. Each

participant completed 10 of these runs in the scanner for a total of 50 T1, 50 T2

and 50 null trials.

Meanwhile, participants performed a luminance change detection task

which probed whether they were able to selectively attend to the cued object.
Both objects underwent brief luminance increments on one of the edges at

randomized intervals (duration: 0.5 s, average interval: 5.43 s), and the timing

of the luminance increments were randomized independently for two objects.

Participants were instructed to count the number of luminance increments

(targets) they detected in the cued object, which could be 3, 4, or 5. At the end

of each trial, the fixation cross turned to yellow for 1 s, which indicated to

participants to report the number of targets. Participants pressed one of three

buttons using their index finger, middle finger, or ring finger, to indicate 3, 4, or

5 targets occurred on the cued object, respectively. The magnitude of the luminance

increments was determined in a separate behavioral experiment, using a 1-up

2-down staircase procedure, to maintain performance at an intermediate level.

2.3.2. Control experiment

The control experiment was run to test whether a spatial attention bias can be

detected in our protocol. The stimuli and timing were identical to the main

experiment while the task and instruction differed. The arrow cues instructed

participants to attend to either the corner of the cued object, or the fixation cross.

Brief luminance increments (0.5 s) at the corner of the triangles (17% along the

length of the edge, see Fig. 6A), as well as luminance increments of the fixation

cross, appeared at random times and participants pressed a button to indicate

their detection of the luminance change on the attended object (T1, T2, or

fixation). The magnitude of the luminance increment was controlled by separate

1-up 2-down staircases to maintain performance at an intermediate level. Each

participant completed 6 scanning runs, which yielded 30 trials for each attention

condition (T1, T2, and fixation).

2.3.3. Eye tracking

To evaluate the stability of fixation, we monitored the eye position outside the

scanner when participants performed the attention task. All participants took part

in the eye tracking session, and each participant performed one run of the

attention task. The position of the right eye was recorded with an Eyelink II

system (SR Research, Ontario, Canada) at 250 Hz. Eye position data were analyzed

offline using custom Matlab code.

2.3.4. Localizer experiment: Task and procedure

For each participant, we also ran a localizer task to identify the lateral occipital

complex (LOC), a key brain area for shape processing (Grill-Spector, Kourtzi,

& Kanwisher, 2001). Twenty intact images (9.741) of simple line drawings of 3-D

recognizable object (‘‘on’’) or their scrambled version (‘‘off’’) were presented in a

19.8 s block. Each block contained 20 object images, with each image presented

for 495 ms followed by a fixation interval of 495 ms. A total of 16 blocks (8 on-off

cycles) were presented in one scanning run. In addition, an 8.8 s fixation period

was presented at the beginning of the scanning run whose imaging data were

subsequently discarded. Participants were instructed to maintain fixation on a

cross in the center, and to press a button whenever they noticed two identical

images in a row (one-back matching). Using this task we defined object selective

regions LOC which were two areas in the occipital cortex, one on the lateral

surface and one in ventral occipitotemporal regions (Grill-Spector et al., 2001).

2.3.5. Retinotopic mapping

Early visual cortex and parietal areas containing topographic maps were

defined in a separate scanning session for each participant. We used rotating

wedge and expanding/contracting rings to map the polar angle and radial

component, respectively (DeYoe et al., 1996; Engel, Glover, & Wandell, 1997;

Sereno et al., 1995). Borders between visual areas were defined as phase reversals

in a polar angle map of the visual field. Phase maps were visualized on

computationally flattened representations of the cortical surface, which were

generated from the high resolution anatomical image using FreeSurfer and custom

Matlab code. In addition to occipital visual areas, our retinotopic mapping

procedure also identified topographic areas in the parietal areas, IPS1-4 (Liu

et al., 2011; Swisher, Halko, Merabet, McMains, & Somers, 2007). In a separate run,

we also presented moving vs. stationary dots in alternating blocks and localized

the human motion-sensitive area, hMTþ , as an area near the junction of the

occipital and temporal cortex that responded more to moving than stationary dots

(Watson et al., 1993). Thus for each participant, we indentified the following

areas: V1, V2d, V2v, V3d, V3v, V3A/B, V4, V7, hMTþ and four full-field maps in the

intraparietal sulcus (IPS): IPS1, IPS2, IPS3, and IPS4.

2.4. MRI data acquisition

All functional and structural brain images were acquired using a GE Health-

care (Waukesha, WI) 3T Signa HDx MRI scanner with an 8-channel head coil,

in the Department of Radiology at Michigan State University. For each participant,

high-resolution anatomical images were acquired using a T1-weighted MP-RAGE

sequence (FOV¼256 mm�256 mm, 180 sagittal slices, 1 mm isotropic voxels)

for surface reconstruction and alignment purposes. Functional images were

acquired using a T2n-weighted echo planar imaging sequence consisted of

30 slices (TR¼2.2 s, TE¼30 ms, flip angle¼801, matrix size¼64�64, in-plane
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Fig. 1. Schematic of experimental task and behavioral results. (A) A trial in the attention task. (B) Behavioral data in the scanner. The number of reported target is plotted

as a function of number of targets in the cued object (solid lines) and number of distracters in the uncued object (dashed lines). Error bars indicate 71s.e.m. across

participants. (C). Eye tracking data outside the scanner. Average horizontal (x) and vertical (y) eye positions across trials and participants are plotted for T1 (red) and T2

(green) trials. Light red and light green denote 95% confidence interval across participants. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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resolution¼3 mm�3 mm, slice thickness¼4 mm, interleaved, no gap). In each

scanning session, a 2D T1-weighted anatomical image was also acquired that had

the same slice prescription as the functional scans, but with higher in-plane

resolution (0.75 mm�0.75 mm�4 mm) for the purpose of aligning function data

to high resolution structural data.

2.5. fMRI data analysis

Data were processed and analyzed using mrTools (http://www.cns.nyu.edu/

heegerlab/wiki/doku.php?id¼mrtools:top) and custom code in Matlab. Prepro-

cessing of function data included head movement correction, linear detrend and

temporal high pass filtering at 0.01 Hz. The functional images were then aligned to

high resolution anatomical images for each participant. Functional data were

converted to percent signal change by dividing the time course of each voxel by its

mean signal over a run, and data from the 10 scanning runs were concatenated for

subsequent analysis.

2.5.1. Functional localizer

We performed a Fourier-based analysis on data from the localizer experiment.

For each voxel, we computed the correlation (coherence) between the best-fitting

sinusoid at the stimulus alternation frequency and the measured time series

(Heeger, Boynton, Demb, Seidemann, & Newsome, 1999). The coherence indicates
the modulation magnitude of experimental parameters on the response of the

particular voxel and thus serves as an index of how active a voxel responded to the

visual stimulation. We used a threshold coherence value of 0.3 to define the object

selective area LOC.
2.5.2. Univariate analysis

For univariate analysis, each voxel’s time series were fitted with a general

linear model whose regressors corresponded to the two attentional conditions

(attending T1 vs. T2). Each regressor was composed of 10 volumes, modeling the

fMRI response in a 22 s window after the onset of trial. The design matrix was

pseudo-inversed and multiplied by the time series to obtain an estimate of the

hemodynamic response evoked by the attention task. To measure the response

magnitude of a region, we averaged the deconvolved response across all the voxels

in a region-of-interest (ROI).

In addition to the visual and parietal regions defined by retinotopic mapping,

we also defined ROIs active during the attention task (Fig. 2). This was done by

using the goodness-of-fit measure (r2 value), which is the amount of variance in

the fMRI time series explained by the deconvolution model. The statistical

significance of the r2 value was evaluated via a permutation test by randomizing

event times and recalculating the r2 value using the deconvolution model.

One thousand permutations were performed and the largest r2 value in each

permutation formed a null distribution expected at chance (Nichols & Holmes,



Fig. 2. Group r2 map and averaged task-defined brain areas. (A). Grouped averaged (N¼6) r2 map in the object-based attention task, shown on an inflated Caret atlas

surface. The approximate locations of the six task-defined areas (FEF, MFG, M1, PCG, IPS, and mSFG) and localizer-defined LOC are indicated by the arrowheads. Color bar

indicated the scale of r2 value. Maps were thresholded at a voxelwise r2 value of 0.09, corresponding to an estimated p-value of 0.005, and a cluster size of 12 voxels. This

corresponded to a whole-brain corrected false positive rate of 0.004 according to AlphaSim (see Section 2). (B) Visualization of task-defined areas on the atlas surface. The

union of each individually defined area is shown in the atlas space. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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2002). Each voxel’s p-value was then calculated as the percentile of voxels in the

null distribution that exceeded the r2 value of that voxel. Using a cut-off p-value of

0.005, we defined six additional areas that were active during the attention task:

frontal eye field (FEF), anterior intraparietal sulcus (aIPS), medial frontal gyrus

(MFG), superior frontal gyrus (mSFG), insula (INS), post-central gyrus (PCG, see

Fig. 2).
2.5.3. Multi-voxel pattern classification

For each voxel in a region, we obtained single-trial fMRI response by averaging

the fMRI time series between the 2nd and the 9th time point (2.2 s to 19.8 s) after

trial onset. For each ROI, there were 50 instances for each object-based attention

condition (T1 and T2) in an n-dimensional space (n is the number of voxels).

We selected voxels that were most strongly modulated by the attention task,

ranked by their r2 value. Then we used a binary Fisher linear discriminant analysis

(FDA) and cross-validation procedure (leave-one-instance-out) to evaluate the

reliability of the multi-voxel activity patterns associated with the two attentional

conditions. During the binary FDA, we projected each test instance onto a weight

vector, converting the n-dimensional instance to a scalar which was then

compared to a bias point to predict which class the instance belonged to. We

trained the FDA on 99 instances and tested on data from one instance. The

procedure was repeated for each instance of the data and we calculated overall

classification accuracy for each ROI. We varied number of voxels used for the

classifier from 1 to 200 voxels (or the maximum number of voxels for ROIs less

than 200 voxels). The classification accuracy generally improved with increasing

number of voxels. However, classification accuracy was not always a monotonic

function of number of voxels; this could be caused by noise in weakly-responding

voxels as they were included in the classifier or by overfitting when the classifier

contained too many features (voxels) which could lead to poor generalization.

Because we did not perform sophisticated feature selection procedure (De Martino

et al., 2008; Yamashita, Sato, Yoshioka, Tong, & Kamitani, 2008), we used the

maximum classification accuracies for the purpose of quantification. Importantly,

the statistical tests were based on exactly the same set of voxels as those used for

main classification analysis (see below).
We then used a permutation test to evaluate the statistical significance of the

classifier performance. For each permutation, we randomly interchanged the trial

labels and obtained a classification accuracy using identical classification and

cross-validation method as above. For each ROI in each participant, we used the

exactly the same set of voxels as those used to compute the classification accuracy

plotted in Fig. 4A. We repeated this process 1000 times to obtain a distribution of

classification accuracies, which represented classifier performance expected by

chance. The observed classification accuracy was then compared with this chance

distribution and the significance was defined as the proportion of the chance

distribution greater than the observed classification accuracy.
2.5.4. Surface-based registration and visualization of group data

All analyses were performed on individual subject data, and all quantitative

results reported were based on averages across individual subject results. How-

ever, to visualize the task-related brain areas, we also performed group averaging

of the individual maps (see Fig. 2A). Each participant’s two hemispherical surfaces

were first imported into Caret and affine-transformed into the 711-2B space of the

Washington University at St. Louis. The surface was then inflated to a sphere and

six landmarks were drawn, which were used for spherical registration to the

landmarks in the Population-Average, Landmark- and Surface-based (PALS) atlas

(van Essen, 2005). We then transformed individual maps to the PALS atlas space

and performed group averaging, before visualizing the results on the PALS atlas

surface. To correct for multiple comparisons, we set the threshold of the maps

based on individual voxel level p-value in combination with a cluster constraint.

For the r2 map (Fig. 2A), we derived a voxel level p-value based on aggregating

the null distributions generated from the permutation test for each individual

participant. Specifically, 1000 randomizations were performed; in each randomi-

zation we randomly selected one sample (with replacement) from each partici-

pant’s distribution (of 1000 values). This generated a distribution of 6000 values,

which represented the maximum r2 values for all voxels expected to be at the

chance level across participants. The p-value of each individual voxel was thus the

percentile of voxels that has a higher r2 value in the null distribution. We then

performed 10,000 Monte-Carlo simulations with AFNI’s AlphaSim program,
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to determine the appropriate cluster size given a particular voxel-level p-value, to

control for the whole-brain false positive rate (cut-off p-value¼0.005, cluster

size¼12, whole-brain corrected false positive rate¼0.004).
3. Results

3.1. Behavioral results

Behavior results showed that participants were able to selec-
tively attend to the cued object. We plotted the number of
reported target as a function of number of luminance changes
in the cued and uncued object (Fig. 1B). The number of reported
targets increased as the number of luminance changes (targets)
on the cued object increased, but there was no such relationship
between the number of reported target and the number of
luminance changes (distracters) on the uncued object. This was
supported by a two-way repeated-measures ANOVA that showed
a significant main effect of target number (F (2, 25)¼9.10,
po0.005), and a significant interaction between number of
targets and attention condition (F (2, 25)¼9.08, po0.005). This
pattern of results suggested that participants were able to attend
to the cued object and ignore the uncued object.

We further broke down the data from the attended condition
into two cued object conditions (T1 vs. T2) and conducted a two-
way repeated-measures ANOVA with factors: number of targets
and cued object. This analysis revealed a significant main effect of
target number (F (2, 25)¼28.16, po0.001), which suggested the
participants successfully performed the task. Furthermore, there
was no interaction between the number of target and the cued
object (p40.5), indicating participants paid equal attention to the
two objects (T1 and T2) during the detection task.

Eye position data averaged across trials and participants were
shown in Fig. 1C. There was no significant difference in mean eye
position within a trial between the two attention conditions, for
either the horizontal or vertical eye position (paired t-test,
p40.5), suggesting participants maintained their fixation during
the experiment and there was no systematic difference between
fixation behavior in T1 and T2 conditions.

3.2. Cortical areas modulated by object-based attention

We first examined cortical activities during the attention task,
using the r2 value (see Section 2). This criterion selected voxels
whose activities were consistently modulated by the task, regard-
less of their relative activities between the two attention condi-
tions (T1 vs. T2). The group-averaged r2 map was projected onto
the atlas surface and shown in Fig. 2A. Object-based attention
modulated activity in a network of areas in occipital, parietal, and
frontal cortex. The occipital activity overlaps with localizer-
defined areas (V1, V2, V3, V3A/B, V4, V7, hMTþ , LOC). The
parietal activity ran along the intraparietal sulcus and extended
to postcentral gyrus. The posterior portion of this activity over-
lapped with the retinotopically defined IPS areas (IPS1-4). We
defined the anterior portion of IPS as a separate ROI, aIPS, and the
activity on postcentral gyrus and the adjacent postcentral sulcus
as PCG. Frontal activity included a region around posterior super-
ior frontal sulcus and precentral sulcus, the putative human
frontal-eye-field (FEF, see Paus, 1996), middle frontal gyrus
(MFG), and a posterior portion of the superior frontal gyrus on
the medial wall (mSFG). All these areas were found in both
hemispheres, displaying largely a bilateral symmetry. Notably,
we found activity in left central sulcus which was absent in the
right hemisphere; this is presumably the primary motor cortex
(M1) as participant used their right hand to make button press
responses. To provide further localization information about the
individually defined ROIs, we showed the loci of these regions on
a PALS atlas surface (Fig. 2B).

3.3. fMRI response amplitude

We next examined the mean fMRI response amplitudes in
different object-based attention conditions in individually defined
ROIs. To simplify data presentation, for this and following analysis
we combined visual areas V2 and V3 into a single area V23; V3A/B
and V7 into a combined area V3AB7; and five intraparietal regions
(IPS1-4 and aIPS) into a combined area IPS. Compared with these
combined ROIs, results remained essentially the same for indivi-
dual ROIs, except the multivariate result (see below) was weaker
for individual IPS areas, presumably because these areas were
small and contained fewer voxels.

All areas showed an increase in fMRI response compared to the
baseline (null) condition. Fig. 3 shows fMRI time course from 16
select ROIs, separately for the left and right hemisphere; the rest
of the ROIs showed similar time courses. Overall, the two
attention conditions (T1 and T2) elicited equivalent levels of
neural activity in all areas. We compared response amplitude
associated with the two attention conditions, both for each single
time point and for the average response across time points in the
trial. None of the comparisons reached statistical significance in
any ROI (paired t-test, all p4 .14).

Even though the two triangle objects occupied the same
central location, because attention was cued by left- and right-
ward pointing arrows, participants might preferentially attend to
left and right visual field (or the left and right part of the object),
respectively. We think this spatial strategy was unlikely because
the target could occur on any edge of the triangle, which required
participant to attend the whole object. Furthermore, this spatial
strategy should predict a contralateral attention effect: left hemi-
sphere ROIs should show a higher response when attending to
rightward pointing triangle (T2) and vice versa. To test this
prediction, we first obtained a response amplitude for each
condition (T1 and T2) by averaging the time points around the
peak (time points 2–5). Then for each pair of ROI (left vs. right),
we performed a two-way repeated-measures ANOVA with factor
attended object (T1 vs. T2) and hemisphere (left vs. right). We
found no interaction effect among all areas (all p40.07), suggest-
ing no differential attentional modulation for left and right
hemishperes associated with attending to the two objects. We
also performed the same time course analysis for all ROIs using
voxels that were selected for the classifier (see below) and
obtained the same result—non-significant interaction between
attended object and hemisphere (all p40.10). Finally, we con-
ducted a control experiment to further rule out the contribution
of spatial attention (see Section 3.6).

3.4. Multi-voxel pattern classification

Next we examined whether the patterns of brain activity
varied as participants attended different objects by using multi-
voxel pattern classification. In this analysis, we further combined
the corresponding ROI in the left and right hemispheres to
increase statistical power, except for M1, which was only present
in the left hemisphere. We used Fisher linear discriminant
analysis and a cross-validation procedure to evaluate the classifier
performance (see Section 2). In general, classifier performance
increased rapidly at small voxel numbers but much more gradu-
ally afterwards. For the purpose of quantification, we plotted the
maximal classification accuracy for each region (Fig. 4A). The
average number of voxels used for each area is shown in Fig. 4C.
We used a permutation test to evaluate whether these classifica-
tion accuracies were significantly above chance using the same



Fig. 3. Mean time course (N¼6) of 16 regions of interest (8 in each hemisphere). The horizontal bar in the lower left panel indicates the duration of a trial. Error bars

denote 71s.e.m. across participants.

V1 V23 V4 V3ab7 MT LOC IPS FEF MFG SFG PCG M1
0.4
0.5
0.6
0.7
0.8
0.9

ycarucca
noit acifi ssal

C

V1 V23 V4 V3ab7 MT LOC IPS FEF MFG SFG PCG M1
0

10

20

30

40

noitropor pli aT
)

%(
noit ubi rt si dll un

ni

V1 V23 V4 V3ab7 MT LOC IPS FEF MFG SFG INS

INS

PCG M1
10

50

100

150

200slexovfor eb
mu

N

INS

Fig. 4. Multi-voxel pattern classification results. (A) Mean classification accuracy across participants (N¼6) for each brain area. Horizontal line indicates 50% accuracy, the

theoretical chance level. (B) Average percentile ranks that the observed classification accuracy fell in the null distribution of chance performance, obtained by permutation

test. Horizontal dashed line indicates 5% tail in the null distribution. The vertical dotted line separates areas with significant vs. non-significant classification accuracies as

assessed by the permutation test. (C) Average size of the classifier (number of voxels) for each brain area corresponding to the maximum classification accuracy (plotted in A).

Error bars are 71s.e.m. across participants.

Y. Hou, T. Liu / Neuropsychologia 50 (2012) 2916–2925 2921
exact voxels. Fig. 4B shows the average percentile rank of the
observed accuracy in the null distributions generated by the
permutation test. This value indicates the probability of obtaining
the observed accuracy by chance and we used 5% tail as the
criterion to determine statistical significance. The classifiers
reliably differentiated the object-based attention conditions in
all the visual areas (V1, V23, V4, hMTþ and V3AB7, LOC), parietal
(IPS) and frontal cortex (FEF). Classification accuracies in other
frontal regions (MFG, mSFG, INS, PCG and M1) were not signifi-
cantly different from chance.

3.5. Control analyses for cue-evoked response

Because we used visual cues at the beginning of each trial to
direct participant’s attention, the classification results might be
contributed by the sensory response to the cues. To evaluate this
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possibility, we performed two control analyses. In the first control
analysis, we compared the classification accuracies using first and
second half of the time series data within a trial (Fig. 5A). If the
visual cues can account for the classification results, we would
predict higher classification accuracies in first half of the fMRI
response than second half of the fMRI response, because the
sensory response to the briefly presented cue should dissipate
over time. We constructed two classifiers by using either the
average response of first 4 time points (2.2–11 s) or the last 4 time
points (11–19.8 s). The rest of the classification analysis was
performed identically to the main analysis. There was no sig-
nificant difference in classification accuracy for the first vs. second
half response in any area (paired t-test, all p4 .05).

To further test the sensory effect of the cue, we conducted a
second control analysis by excluding voxels that were directly
stimulated by the cue. Recall that for each participant we also
conducted the retinotopic mapping procedure, which included
eccentricity mapping using expanding/contracting rings (see
Section 2). Thus for each voxel in a ROI we can use its phase in
Fig. 5. Results of the control analyses. (A) Mean classification accuracy using the first an

original ROIs (Original) and with reduced ROIs excluding voxels corresponding to the c

for areas that showed significant classification performance; results for other areas we

Fig. 6. Control experiment: task and results. (A) Schematic of a trial in the control

hemisphere. The horizontal bar in the lower left panel indicates the duration of a trial
eccentricity mapping to infer its preferred retinal location. We
excluded voxels whose response phase fell in the central 0.51
eccentricity (twice the size of the cue) and performed multi-voxel
classification using the remaining voxels. If sensory response to
the cue contributed to our pattern classification result, we should
expect a decrease in accuracy using the reduced voxel set.
However, we found no such decrease comparing classification
accuracy from the reduced set voxels to the original set (Fig. 5B,
paired t-test, all p4 .11). These control analyses showed that the
observed classification accuracies were not driven by the sensory
response to the attentional cues.

3.6. Control experiment for spatial attention

Although the two triangle objects in our experiment occupied
the same overall location, they were not completely overlapping.
In particular, the left and right corners of the two objects might
provide anchors for employing a spatial attention strategy. That
is, when cued to attend to object 1 (T1), participants attended to
d second half data within a trial. (B) Mean classification accuracies of analysis with

ues (Reduced). Error bars are 71s.e.m. across participants. Results are shown only

re similar.

experiment. (B) Mean time course (N¼4) of two regions (IPS and FEF) in each

. Error bars denote 71s.e.m. across participants.
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its left-pointing corner, and vice versa. We have argued against
this possibility based on the task demands and the lack of
contralateral attention effects. However, it might be that partici-
pants still used such a sub-optimal strategy and our protocol was
not sensitive enough to detect such spatial biases. To evaluate
how a spatial bias might contribute to our results, we conducted a
control experiment, in which participants were explicitly
instructed to attend to the corner region of the cued triangle
(Fig. 6A). We performed the same univariate analysis as in the
attention experiment and conducted two-way repeated-measures
ANOVA on the fMRI response amplitude with attended object
(T1 vs. T2) and hemisphere (left vs. right) as factors. We found
significant interactions between the two factors in both IPS
(F (1, 3)¼11.0, po0.05) and FEF (F (1, 3)¼10.1, po0.05). The
time course revealed a contralateral attention effect: attending to
the left-pointing corner (T1) resulted in a larger fMRI response in
the right hemisphere ROIs and vice versa (Fig. 6B). There was an
apparent asymmetry in this effect such that the difference
between the two attention conditions was larger in the right
than the left hemisphere. Although this result suggests a hemi-
spheric asymmetry in the control of spatial attention, we should
caution against any strong interpretation due to the small sample
size. Importantly, however, the contralateral attentional effect
stands in contrast with the lack of such effect in the main
experiment. Thus we conclude that participants unlikely resorted
to a spatial strategy to attend only to the corner region of the cued
object in our main experiment.
4. Discussion

We studied the representation of attentional priority during an
object-based selective attention task. By instructing participants
to selectively attend to one of the spatially superimposed objects,
we found identical fMRI response amplitude associated with
attending to different objects using the univariate deconvolution
analysis. However, using MVPC we were able to discern distinct
neural patterns for different attended objects in both the dorsal
frontoparietal network and visual cortex. We suggest that the
distinct patterns in frontoparietal areas constitute top-down
priority signals for object-based selection.

4.1. Object-based attention modulates response patterns

in the visual cortex

In this study, we showed that attention to objects with dynamic
feature properties can modulate both primary and extrastriate visual
cortex in terms of multi-voxel activity patterns. Previous studies often
employed superimposed faces and houses stimuli (O’Craven et al.,
1999; Serences et al., 2004), and have demonstrated response
amplitude changes due to object-based selection in category-
selective visual areas FFA and PPA (Murray & Wojciulik, 2004;
O’Craven et al., 1999; Serences et al., 2004). Our study employed
simpler shapes to probe the early and intermediate levels of shape
representation. Consistent with these early studies on category-
selective high-level areas, our finding of successful classification of
the attended object in LOC suggests that attention can modulate
shape representations in this intermediate visual area (see also
Stokes, Thompson, Nobre, & Duncan, 2009). Unlike previous studies,
none of the brain areas showed an overall amplitude difference
between attending to the two objects in our study. Thus, low-level
differences that should affect overall response amplitude (e.g., size,
contrast, brightness) cannot explain our results. Recent studies on
scene categorization have also demonstrated different multi-voxel
patterns for different scene categories in object-selective areas
(Peelen et al., 2009; Peelen & Kastner, 2011). Our results are
consistent with these results, which on a whole suggest that the
intermediate and high-level visual areas could represent object
identity in a rather abstract fashion.

Interestingly, we also observed significant classification in
early stages of the visual hierarchy such as V1 and V2. Such
results suggest that object-based selection can also modulate
relatively early visual representations. Consistent with our find-
ings, a recent study reported V1 modulation during surface-based
selection (Ciaramitaro, Mitchell, Stoner, Reynolds, & Boynton,
2011). These authors reported a higher fMRI response amplitude
when a transient target event occurred on the cued vs. uncued
surface (object) composed of moving dots. However, these results
could be partly driven by a bottom-up attentional capture effect
due to the use of an exogenous attention cue and a transient
target. Here we employed purely top-down attentional instruc-
tions and measured brain activity associated with the active
maintenance of attention to visual objects. Thus our results
complement and extend the finding of attentional modulation
of V1 activity associated with transient visual targets (Ciaramitaro
et al., 2011). Our results are also consistent with findings of
significant decoding of attended orientation and direction in early
visual areas using superimposed stimuli (Kamitani & Tong, 2005;
Kamitani & Tong, 2006). One key difference is that in those
studies the two stimuli differed by one simple feature, whereas
more complex features distinguished our stimuli. Thus selection
demands are likely more high-level and object-based in our study.

What are the possible neuronal mechanisms for modulation of
early visual areas during object-based selection? One possibility is that
attention can select high-level features such as the corners of the cued
object. Given that some neurons in extrastriate areas are sensitive to
such complex features (Hubel & Wiesel, 1965; Pasupathy & Connor,
2001), it seems plausible that attention can modulate their response.
This explanation, however, cannot easily accommodate our finding of
significant decoding in V1, where simple features such as orientation
are represented. Interestingly, studies have also demonstrated V1
neuronal modulation due to object-level selection in a curve tracing
task (Khayat et al., 2006; Roelfsema et al., 1998), which has been
interpreted as attentional facilitation of horizontal connections that
tend to connect neurons preferring collinear line elements and
neurons with adjacent receptive fields (Schmidt, Goebel, Löwel, &
Singer, 1997). A similar mechanism could be at work in our task such
that the representation of the component parts of an object (e.g., line
segments and vertices) can be linked together and enhanced in V1.
Such neuronal enhancement could manifest as distinct multi-voxel
activity patterns in fMRI BOLD measures. This scenario is akin to the
‘‘grouped array’’ account of object-based selection (Kramer, Weber, &
Watson, 1997), which suggests that attention can be applied selec-
tively to a shape outline and dynamically updated. Thus object-based
selection could be implemented by sophisticated combination of
spatial- and feature-level selections. Although this is a possible
interpretation of our data, we should note that such a view of
object-based selection is quite different from typically studied forms
of spatial and feature selection which involves selection along a single
dimension with large (often maximum) difference (e.g., left vs. right
hemifield, upward vs. downward motion). Future studies with higher
spatial and temporal resolution data could shed light on the nature of
early visual modulation during object-based selection. Our current
results suggest that attentional selection is a highly flexible mechan-
ism that can highlight the prioritized object at multiple processing
levels, from image-based representations in early visual areas, to
object-based representations in LOC.

4.2. Domain general network of attention control

Here we showed that neural activities in FEF and IPS can be
used to differentiate specific attended objects. This finding,



Y. Hou, T. Liu / Neuropsychologia 50 (2012) 2916–29252924
together with previous work showing the importance of these
areas in maintaining spatial attention (Silver et al., 2005;
Szczepanski, Konen, & Kastner, 2010) and feature-based attention
(Egner et al., 2008; Liu et al., 2011), suggest the dorsal frontopar-
ietal areas contain domain-general control signals for different
types of attention. Earlier studies which directly compared overall
brain activity for spatial and object-based attention (Fink, Dolan,
Halligan, Marshall, & Frith, 1997; Wojciulik & Kanwisher, 1999)
also found largely overlapped brain networks active for different
types of attention task. Here we further demonstrated that the
distributed pattern of neural activity in these areas correlated
with the specific attended object, a neural signature for atten-
tional priority signal (see below for further discussion). The
notion of a domain general network for the maintenance of
attention is also complimentary to findings on attentional shift.
Shifts of attention consistently evokes a transient response in a
medial superior parietal lobule region (Liu, Slotnick, Serences,
& Yantis, 2003; Serences et al., 2004; Yantis et al., 2002), which is
thought to be domain general for resetting the current focus of
attention. Thus current evidence supports the notion that the
dorsal frontoparietal network controls both the shift and main-
tenance of attention in a variety of domains.

4.3. Priority signals for object-based selection

Accumulating evidences suggest frontal and parietal regions
like FEF and IPS contain topographical representation of spatial
locations (Silver & Kastner, 2009; Szczepanski et al., 2010) which
direct spatial attention to important locations via feedback to
visual cortex. Such findings support the theoretical proposal of
the priority maps (Itti & Koch, 2001; Koch & Ullman, 1985; Wolfe,
1994), which encode the distribution of attentional resources in
space. Although the notion of attentional priority map can
accommodate a large number of findings in spatial attention, it
does not explain how selective attention can operate on more
abstract dimensions such as perceptual objects.

In this study, we found object-specific neural patterns in
dorsal frontoparietal areas, suggesting these areas represent
priority information for selected objects. We suggest these
object-specific priority signals form the neural substrates for
top-down modulation that highlight which particular object to
attend. Such top-down modulation can select and sustain distinct
neural activity patterns in the visual cortex to serve behavioral
goals, reflected by the observed significant classification in visual
areas. Thus neural signals in the dorsal frontoparietal areas seem
to be sufficiently abstract to represent the current focus of
attention, when attention needs to select an object which shares
similar location and feature as a distracter.

We can only speculate about the format of such object-level
priority signals. Because neurons in frontoparietal areas have
spatial selectivity, one possibility is that priority is represented
by assembly of neurons whose spatial receptive fields coincide
with the attended object. This is essentially the implementation
of the ‘‘grouped array’’ account of object-based selection in high
level cortex. An alternative is that neurons in these areas develop
genuine selectivity for whole objects or complex features that can
bias attentional selection. This latter scenario is consistent with
recent findings of feature-specific responses in selection tasks
(Liu et al., 2011; Serences & Boynton, 2007) and findings that
implicate these areas in other non-spatial tasks (e.g., Bichot, Schall,
& Thompson, 1996; Konen & Kastner, 2008; Oristaglio, Schneider,
Balan, & Gottlieb, 2006). Indeed, the posterior parietal cortex has
been shown to represent abstract rule-based categorical distinc-
tions in visual category learning tasks (Fitzgerald, Swaminathan, &
Freedman, 2012), suggesting a possible multiplexed representation
of both spatial and non-spatial properties. These additional
considerations lead us to favor the interpretation of selectivity
for object identity, not its location, that underlies our results, but
more research is needed to further characterize the nature of
attentional priority signals in dorsal frontoparietal areas.
5. Conclusions

Using multi-voxel pattern classification, we found distinct
patterns of neural activity associated with attending to different
objects in both the visual cortex and frontoparietal regions. We
further ruled out explanations based on spatial attention effects
and sensory effects of the cue. These results suggest that neural
activity in early visual cortex can be modulated by object-based
attention and the dorsal frontoparietal network contains priority
information for object-specific top-down modulation.
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