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Humans can flexibly select locations, features, or objects in a visual scene for prioritized processing. Although it is
relatively straightforward to manipulate location- and feature-based attention, it is difficult to isolate object-
based selection. Because objects are always composed of features, studies of object-based selection can often
be interpreted as the selection of a combination of locations and features. Herewe examined the neural represen-
tation of attentional priority in a paradigm that isolated object-based selection. Participants viewed two
superimposed gratings that continuously changed their color, orientation, and spatial frequency, such that the
gratings traversed the same exact feature values within a trial. Participants were cued at the beginning of each
trial to attend to one or the other grating to detect a brief luminance increment, while their brain activity was
measured with fMRI. Using multi-voxel pattern analysis, we were able to decode the attended grating in a set
of frontoparietal areas, including anterior intraparietal sulcus (IPS), frontal eye field (FEF), and inferior frontal
junction (IFJ). Thus, a perceptually varying object can be represented by patterned neural activity in these
frontoparietal areas. We suggest that these areas can encode attentional priority for abstract, high-level objects
independent of their locations and features.

© 2016 Elsevier Inc. All rights reserved.
Selection of task-relevant information is necessary to guide efficient
and adaptive behavior in a complex environment. Attention is the
mechanism that can select different aspects of a scene, such as locations,
features and objects (Carrasco, 2011; Scolari et al., 2014). Although the
neural basis of attention has been extensively studied (Kastner and
Ungerleider, 2000; Reynolds and Chelazzi, 2004), a central question re-
mains: how is top-down selection implemented in the brain?

A key assumption of attention theories is that higher-order brain
areas maintain attentional priority, akin to a template, that exerts top-
down control to guide selection (e.g., Deco and Rolls, 2004; Desimone
and Duncan, 1995; Wolfe, 1994). For the control of spatial attention,
the neural representation of spatial priority has been strongly
linked to spatiotopic neural responses in dorsal frontoparietal areas
(Bisley and Goldberg, 2010). Neurophysiological evidence from
microstimulation studies suggest that these higher-level topographic
representations send top-down control signals to earlier visual areas
to implement spatial selection (Ekstrom et al., 2008; Moore and
Armstrong, 2003; Moore and Fallah, 2004). For the control of feature-
based attention, evidence from human fMRI andmonkey neurophysiol-
ogy has suggested that the dorsal frontoparietal areas can also represent
the attended visual feature such as specific color and motion direction
(Liu et al., 2011; Liu and Hou, 2013; Mendoza-Halliday et al., 2014).
However, real scenes typically contain many objects, and observers
State University, East Lansing,
often select whole perceptual objects (Scholl, 2001). This raises the
question of how attentional priority for perceptual objects is represent-
ed in the brain.

One key challenge in studying object-based attention is that objects
are always composed of features so it can be difficult to ascertain that
selection occurred on the level of whole objects instead of elemental
features. For example, in a popular paradigm where participants were
instructed to attend to either a face or a house in a superimposed face/
house image, the face and house stimuli differ in terms of low level fea-
tures such as curvature and spatial frequency (Watt, 1998). Thus behav-
ior in these studies can be potentially facilitated by feature-level
selection, making it difficult to attribute results to object-based
attention.

The goal of the present study is to investigate the neural representa-
tion of attentional priority for perceptual objects. Based on previous
work showing that the dorsal frontal and parietal areas represent atten-
tional priority for non-spatial features,we hypothesized that these areas
can also represent priority for whole perceptual objects. To isolate
object-level selection, we employed a compound stimulus composed
of two objects that continuously evolved inmultiple feature dimensions
(Blaser et al., 2000). We then applied both fMRI univariate analysis and
multivariate pattern analysis to investigate neural signals that can rep-
resent specific attended objects. Because we employed a cueing ap-
proach to direct attention, static featural differences associated with
the cue could potentially account for classification results. Thus we
also ran a control experiment to rule out the contribution of feature-
based attention to our results.
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Materials and methods

Participants

Twelve individuals (six females, mean age: 25.5), including the au-
thor, participated in the experiment. Participants were recruited from
theMichigan State University community (graduate and undergraduate
students and the author) and all had normal or corrected-to-normal vi-
sual acuity and reported to have normal color vision. Participants were
paid at the rate of $20/h for their time. They gave informed consent
under the study protocol approved by the Institutional Review Board
at Michigan State University. Sample size was determined prior to
data collection and was based on comparable studies in the literature
on fMRI studies of visual attention.We also conducted a power analysis,
using effect size estimated from a previously published study in our lab
that used a similar paradigm to decode attentional state (Hou and Liu,
2012). We pooled decoding accuracies from two frontoparietal sites
(IPS and FEF) across participants to estimate the effect size. We then
usedG*Power 3.1.9 (Faul et al., 2007) to estimate the power in detecting
a true effect using a two-tailed t-test for significant above-chance classi-
fication. This analysis showed that a sample of 12 participants would
give a power of 0.82.

Stimulus and display

The visual stimuli consisted of two superimposed Gabor patches
(σ = 1.1°) that varied in their orientation, color, and spatial frequency
simultaneously (Fig. 1). The evolution of the features followed fixed, cy-
clic trajectories in their respective dimensions. On each trial, the Gabors
rotated counterclockwise through all possible orientations at a speed of
59°/s; the colors of the Gabors traversed through all hues on a color cir-
cle in the CIE L*a*b space (L = 30, center: a = b= 0, radius = 80) at a
speed of 59°/s; the spatial frequency of the Gabors varied smoothly in a
sinusoidal fashion from 0.5 cycles/deg. to 3 cycles/deg. at a speed of
0.41 cycles/deg./s. Thus, in 6.1 s (the duration of the stimulus movie),
the Gabors rotated two full cycles in orientation, traversed one cycle
in the color space, and one full period in the sinusoidal modulation of
spatial frequency. All features evolved continuously and simultaneously
with maximal offset between the two Gabors (opposite angles in color
space, orthogonal orientations, opposite phases in the modulation of
spatial frequency).
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Fig. 1. Schematic of a trial in the main experiment. Two superimposed Gabors continuously ch
trajectories in feature space are shown on the right (solid and dashed curves represent two
spatial frequency is a linear dimension. Here a “2” instructs participants to attend to the secon
All stimuli were generated using MGL (http://justingardner.net/
mgl), a set of custom OpenGL libraries running in Matlab (Mathworks,
Natick, MA). Images were projected on a rear-projection screen located
in the scanner bore by a Toshiba TDP-TW100Uprojector outfittedwith a
custom zoom-lens (Navitar, Rochester, NY). The screen resolution was
set to 1024 × 768 and the display was updated at 60 Hz. Participants
viewed the screen via an angled mirror attached to the head coil at a
viewing distance of 60 cm. Color calibration was performed with a
MonacoOPTIX colorimeter (X-rite, Grand Rapids, MI), which generated
an ICC profile for a display. We then used routines in Matlab's Image
Processing Toolbox to read the ICC profile and calculate a transforma-
tion from the CIE L*a*b space to the screen RGB values.

Task and design

Participants tracked one of the Gabor patches on each trial and per-
formed a change detection task. At the beginning of each trial, a number
(“1” or “2”, 0.4°, white) appeared in the center of the display for 0.5 s. In
prior practice sessions (see below), participants had learned to associate
“1”with theGabor thatwas initially red, horizontal, and high spatial fre-
quency, and to associate “2”with the Gabor that was initially cyan, ver-
tical, and low spatial frequency. The initial image of the two Gabors
appeared together with the number cue. We referred to these two
Gabors as “Object 1” and “Object 2” in the instruction, and we adopt
the same terminology for the rest of this report. During the subsequent
6.1 s, the two objects continuously evolved through the features space
as described above, and participants were instructed to track the cued
object and monitor for a brief brightening event (0.2 s). On each trial,
there was either a brightening of the cued object (target), a brightening
of the uncued object (distracter), or no brightening of either object
(null). The three trial types (target, distracter, null) were interleaved
and equally probable (proportion 1/3 each). The timing of targets and
distracters conformed to a uniform distribution in two possible time
windows: 1.5–2.5 s or 4.5–5.5 s after trial onset. These time windows
were chosen such that the two objects had similar spatial frequency,
which made the task challenging. The magnitude of the brightening
(luminance increment) was determined for each participant at the be-
ginning of the scanning session with a thresholding procedure (see
Practice Sessions below). Participants were instructed to press a button
with their right index finger if they detected the target (a brief brighten-
ing on the cued object), and withheld response otherwise. They were
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told to respond after the stimulus disappeared, without any emphasis
on response speed. The instruction emphasized that they should track
the cued object throughout the duration of themovie on all trials. Target
probability and timing were not conveyed to participants. We counted
button responses on target trials as hits, and button responses on either
distracter or null trials as false alarms.

Therewere two conditions in the experiment: attend to Object 1 and
attend to Object 2. Each run in the scanner started with an 8.8 s fixation
period, followed by a 316.8 s period in which trials of 6.6 s long were
separated by ITIs jittered in the range of 4.4–8.8 s. Each participant com-
pleted 9 runs in the scanner, which yielded ~100 trials per condition.

Practice sessions

Each participant underwent 2–4 h of practice in the psychophysics
laboratory before theMRI session. The first part of the practice involved
a thresholding task which was identical to the main task as described
above, except that the magnitude of the luminance increment was var-
ied across trials using themethod of constant stimuli. Six levels of lumi-
nance increments were used and the resulting psychometric function
was fit with a Weibull function to derive a threshold corresponding to
~75% correct. Participants continued to practice the thresholding task
until their thresholds stabilized.

In the second part of the practice, participants performed the change
detection task with individually determined luminance increment
threshold. At least four runs were completed, during which we also
monitored participants' eye position with an Eyelink 1000 eye tracker
(SR Research, Ontario, Canada). Eye position data were analyzed offline
to assess the stability of fixation. For each participant, we submitted
their trial-level horizontal and vertical eye position to a two-way
ANOVA (factor 1: attend to Object 1 vs. Object 2; factor 2: time points).
We did not find any significantmain effect or interaction for any subject
in either the vertical or horizontal eye position. Although we were not
able to monitor eye position in the scanner, it seemed unlikely partici-
pants would change their fixation behavior from training to scanning
sessions. We would also like to note that had subjects tracked the
cued object, their eye movement pattern would be similar across the
two objects because they rotated in the same direction. Thus it is unlike-
ly that eye movement played a significant role in our results.

Retinotopic mapping

For each participant, we also defined early visual cortex containing
topographic maps in a separate scanning session. We used rotating
wedge and expanding/contracting rings to map the polar angle and ra-
dial component, respectively (DeYoe et al., 1996; Engel et al., 1997;
Sereno et al., 1995). Borders between visual areas were defined as
phase reversals in a polar angle map of the visual field. Phase maps
were visualized on computationally flattened representations of the
cortical surface, which were generated from the high resolution ana-
tomical image using FreeSurfer and custom Matlab code. In a separate
run, we also presented moving vs. stationary dots in alternating blocks
and localized themotion-sensitive area, MT+, as an area near the junc-
tion of the occipital and temporal cortex that responded more to mov-
ing than stationary dots (Watson et al., 1993).We were able to reliably
indentify the following areas in all participants: V1, V2, V3, V3AB, V4,
and MT+. There is controversy regarding the definition of visual area
V4 (for a review, seeWandell et al., 2007). Our definition of V4 followed
that of Brewer et al.(2005), which defines V4 as a hemifield representa-
tion directly anterior to V3v.

MRI data acquisition

All functional and structural brain images were acquired using a GE
Healthcare (Waukesha, WI) 3 T Signa HDx MRI scanner with an 8-
channel head coil, in the Department of Radiology at Michigan State
University. For each participant, high-resolution anatomical images
were acquired using a T1-weighted MP-RAGE sequence (FOV =
256 mm × 256 mm, 180 sagittal slices, 1 mm isotropic voxels) for
surface reconstruction and alignment purposes. Functional images
were acquired using a T2*-weighted echo planar imaging sequence
consisted of 30 slices (TR = 2.2 s, TE = 30 ms, flip angle = 80°, matrix
size = 64 × 64, in-plane resolution = 3 mm × 3 mm, slice thickness =
4mm, interleaved, no gap). In each scanning session, a 2D T1-weighted
anatomical imagewas also acquired that had the same slice prescription
as the functional scans, for the purpose of aligning functional data to
high resolution structural data.

fMRI data analysis

Data were processed and analyzed using mrTools (http://www.cns.
nyu.edu/heegerlab/wiki/doku.php?id=mrtools:top) and custom code
in Matlab. Preprocessing of function data included head motion correc-
tion, linear detrending and temporal high pass filtering at 0.01 Hz. The
2D T1-weighted image was used to compute the alignment between
the functional images and the high-resolution T1-weighted image,
using an automated robust image registration algorithm (Nestares and
Heeger, 2000). Functional datawere converted to percent signal change
by dividing the time course of each voxel by its mean signal over a run,
and data from the nine scanning runs were concatenated. All region-of-
interest (ROI) analyses were performed on individual participant's na-
tive anatomical space. For group-level analysis, we used surface-based
spherical registration as implemented in Caret to co-register the indi-
vidual participant's functional data to the Population-Average,
Landmark- and Surface-based (PALS) atlas (Van Essen, 2005). Group-
level statistics (random effects) were computed in the atlas space and
the statistical parameter maps were visualized on a standard atlas sur-
face (the “very inflated” surface). To correct for multiple comparisons,
we set the threshold of the maps based on individual voxel level p-
value in combination with a cluster constraint, using the 3dFWHMx
program to estimate the smoothing parameter and the 3dClustSim pro-
gram to estimate the cluster threshold; bothprograms are distributed as
part of AFNI.

Univariate analysis: deconvolution
Each voxel's time series was fitted with a general linear model

whose regressors contained two attention conditions (Object 1, Object
2). Each regressor modeled the fMRI response in a 25 s window after
trial onset. The design matrix was pseudo-inversed and multiplied by
the time series to obtain an estimate of the hemodynamic response
for each attention condition. To measure the response magnitude of a
region, we averaged the deconvolved response across all the voxels in
a ROI. For each voxel, we also computed a goodness of fit measure (r2

value), which is the amount of variance in the fMRI time series ex-
plained by the deconvolutionmodel. The r2 value is analogous to an om-
nibus F statistic in ANOVA, in that it indicates the degree to which a
voxel's time course is modulated by the task events (Gardner et al.,
2005).

For the visualization of the univariate result at the group level, we
computed a group-averaged r2 map. The statistical significance of the
r2 values was assessed via a permutation test (for details see Gardner
et al., 2005; Liu et al., 2011). At the group level, we transformed the in-
dividually obtained r2 maps to the PALS atlas space and averaged their
values (Fig. 3).We used a p of 0.005 and a cluster extent of 18 to thresh-
old the group r2 map, which corresponded to a whole-brain false posi-
tive rate of 0.01 according to AFNI 3dClustSim.

Multivariate analysis: multi-voxel pattern analyses
Our goal in themultivariate analysis was to identify patterns of neu-

ral activity that can represent attended object in our task. To this end,
we performed multi-voxel pattern analysis (MVPA) across the whole
brain using a “searchlight” procedure (Kriegeskorte et al., 2006) to

http://www.cns.nyu.edu/heegerlab/wiki/doku.php?idrtools:top
http://www.cns.nyu.edu/heegerlab/wiki/doku.php?idrtools:top
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identify voxels that can be used to decode the attended object. We re-
stricted our search to the cortical surface based on each individual par-
ticipants' surface reconstruction. For each voxel in the gray matter
(center voxel), we defined a small neighborhood containing all gray
matter voxels within a 12 mm radius (measured as distance on the
folded cortical surface). This radius produced neighborhoods containing
~100 voxels on average and MVPA was performed on each of such
neighborhoods.

For each neighborhood, we extracted single-trial fMRI response for
each voxel with the following procedure. We first averaged the
deconvolved fMRI response obtained from univariate analysis (see
above) across all voxels and conditions in the neighborhood, which
served as an estimate of the hemodynamic impulse response function
(HIRF) in that neighborhood. We then constructed four boxcar func-
tions, with a boxcar corresponding to each individual trial. The first
two functions coded trials on which participants made a button-press
response, one function for Object 1 and another function for Object 2.
Similarly, the second two functions coded trials on which participants
did not make a response (one for each object). The boxcar functions
were then convolved with the estimated HIRF to produce a design ma-
trix coding for each individual trial in each condition. The design matrix
was then pseudo-inversed and multiplied by the time series to obtain
an estimate of the response amplitude (beta weight) for each individual
trial in each voxel. MVPA was performed using beta weights on no-
response trials, which were composed of most of the null and distracter
trials and a small portion of target trials. This precluded neural signal re-
lated to target detection and motor response from contributing to our
results. The no-response trials accounted for the majority of trials due
to our design (1/3 target-present trials) and we obtained ~70 trials
per condition for each participant. We used linear support vector ma-
chines (SVM) as implemented in LIBSVM (Chang and Lin, 2011) in a
leave-one-run-out cross-validation procedure to perform the
multivoxel pattern analysis. The SVM was trained to discriminate be-
tweenmultivoxel patterns associatedwith attending to Object 1 vs. Ob-
ject 2. We trained the SVM using trial data from 8 runs and tested its
accuracy on the trial data from the left-out run. This was repeated 9
times until all trials were classified by the SVM, and the resulting classi-
fication accuracy was assigned to the center voxel of the neighborhood.
The above procedure was repeated for all neighborhoods to obtain a
map of classification accuracy across the cortical surface.

For the group analysis, we averaged individual classificationmaps in
the PALS atlas space. Voxel-wise p-value was derived by a t-test (two-
tailed) comparing the classification accuracies from all participants
(N = 12) against the chance-level (0.5). We used 3dFWHMx to esti-
mate the smoothness of individual classification maps and used the av-
erage value to determine the threshold of the group analysis via
3dClustSim. The group-average map was thresholded at a voxel p
value of 0.002 and a cluster extent of 18 voxels, which corresponded
to a whole-brain false positive rate of 0.01. The threshold was slightly
different from the univariate analysis above because the classification
map had a larger smoothing parameter than the fMRI time series.

Methods for the control experiment

We also ran a separate control experiment to assess the contribution
of static featural differences in themain experiment (see Results for the
full rationale). The control experiment was very similar to the main ex-
periment, so only a brief description of the methods is provided here,
with differences between experiments emphasized.

Another group of 12 individuals participated in the control experi-
ment; all were graduate and undergraduate students at Michigan
State University (mean age: 23.8), with one individual already partici-
pated in the main experiment. Stimuli were identical to those of the
main experiment, except we introduced two additional Gabor objects
for the tracking task (Fig. 5). Object 3was identical to Object 1 at the be-
ginning of the trial, but its trajectory in the color and orientation
dimension was reversed with respect to Object 1; similarly, Object 4
started in an identical form as Object 2 but evolved along a reversed tra-
jectory in the color andorientation dimension. On each trial, two objects
appeared together and an auditory cue (“one”, “two”, “three”, “four”)
instructed participants which object to attend in order to detect a
brightening event on that object. There were two possible pairings of
objects: either Object 1 and 2 were shown, or Object 3 and 4 were
shown. All trial types were interleaved within a run. The timing, target
prevalence, and training procedurewere all identical to themain exper-
iment. Participants completed 10 runs in the scanner, which yielded
~56 trials per condition.

Imaging data were acquired and analyzed similarly as the main ex-
periment. We performed searchlight MVPA across the whole brain
using trials in which participants did not make a button response (on
average ~ 38 trials per condition). Four sets of classification analyses
were conducted, two within-pairing and two cross-pairing. In the
within-pairing classification, a SVM was trained and tested to classify
Object 1 vs. Object 2 in a leave-one-run-out cross-validation procedure;
similarly, another SVM was trained and tested to classify Object 3 vs.
Object 4. In the cross-pairing classification, a SVMwas trained to classify
Object 1 vs. Object 2 and tested to classify Object 3 vs. Object 4, or vice
versa. Whole-brain classification accuracy maps were then averaged
across participants, thresholded, and displayed on the atlas surface as
the main analysis. Due to fewer trials in the control experiment than
the main experiment, the classifier performance is expected to be
lower. We thus thresholded the group classification map at a lower
threshold, using a voxel p value of 0.01 and a cluster extent of 29 voxels,
which corresponded to a whole-brain false positive rate of 0.05.

Results

Behavior: main experiment

Participants reported small luminance increments in the cued object
via button presses. They detected around 70% of luminance changes and
made less than 5% of false alarms (Fig. 2). We compared performance
between attending to Object 1 vs. Object 2 using t-tests. There was no
difference in Hit, FA, or Hit-FA scores (all p N 0.6). Thus, behavioral re-
sults suggest that our task was attentionally demanding and task diffi-
culty was similar for detecting the changes in the two objects.
Although average performance did not differ for the two objects, idio-
syncratic variations in performance at the individual level could still
drive multivariate pattern classification results (Todd et al., 2013).
Thus we also examined individual participant's behavioral data. For
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each participant, we obtained two 2 × 2 contingency table, one for the
number of hits, one for the number of false alarms, across the two atten-
tion conditions. We then performed a χ2 test for independence and
found 1 out of the 24 tests showed a significant effect (p b 0.05). This
significant effect would well be a false positive given that no correction
for multiple tests was applied. Thus, the behavioral data did not exhibit
discernible idiosyncratic variation between conditions at the individual
level.

Univariate fMRI: main experiment

We used the goodness-of-fit of the deconvolution model (r2) to lo-
calize brain areas whose activity was modulated by our task (see
Methods). At the group level, a network of frontoparietal areas, as
well as the occipital visual areas, showed significant modulation by
our task (Fig. 3A). In the frontal cortex, two activation loci were found
along the precentral sulcus: a dorsal locus at the junction of precentral
and superior frontal sulcus, the putative human frontal eye field (FEF)
and a ventral locus near the inferior frontal sulcus, which we referred
to as inferior frontal junction (IFJ). In the parietal cortex, activity ran
along the intraparietal sulcus (IPS).

Fig. 3B plots mean fMRI time courses from a few visual areas, as de-
fined by the retinotopic mapping procedure, and FEF, which was de-
fined on the group-averaged r2 map (Fig. 3A). These areas all showed
robust task-related activity with nearly identical responses for the two
attention conditions. For this ROI-based analysis, we did not find any
significant difference in response amplitude between the two condi-
tions in all brain areas we defined, even without correcting for multiple
comparisons (other retinotopic areas include V2, V3, V3AB and the task-
defined area IFJ, data not shown). We also conducted whole-brain con-
trast analysis, comparing the two attention conditions. This analysis did
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not yield any significant difference in activation at the same statistical
threshold as in Fig. 3A. Even at more lenient statistical thresholds, the
contrast did not reveal any significant activation. Thus, the univariate
analysis showed equivalent overall neural responses in the two atten-
tion conditions.

Multivariate fMRI: main experiment

We used whole-brain “searchlight” MVPA to determine whether
patterns of neural activity can be used to predict the attended object.
For this analysis, we only used fMRI data from trials on which partici-
pants did not make a response, to eliminate the contribution from pro-
cesses associated with detecting the target and making a motor
response (manual button press). This analysis revealed significant
above-chance classification in FEF, IFJ, and anterior IPS regions at the
group level (Fig. 4). These three areas were present in both hemi-
spheres, showing bilateral symmetry. Significant classification was
also observed in a lateral occipital region in the left hemisphere. Thus,
multivoxel patterns in these areas can be used to decode the attended
object, even though average univariate response was not informative
about which object was attended.

For this multivariate analysis, we used trials where participants did
not make a response to limit contributions from neural processes asso-
ciated with target detection. However, the ignored distracter trials
contained brightening events that were not completely equated be-
tween the two attention conditions. To explore whether such subtle
perceptual difference contributed to our results, we performed an addi-
tional analysis using only the null trials for the searchlight classification.
The two attention conditions were perceptually identical in these null
trials. Here we obtained similar results as in themain analysis (see Sup-
plementary Material). Furthermore, a perceptual difference would
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Fig. 4.Multivariate pattern analysis: main experiment. Group-averaged whole-brain classification map visualized on the PALS atlas surface. Scale bar indicates classification accuracy.
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predict strong decoding performance in early visual cortex, which we
did not observe. Thus we conclude that subtle perceptual difference
due to distracter brightening could not account for our decoding results.
Behavior: control experiment

Because both objects started with a fixed set of features and
remained still during the cue period, it is possible that the classifier
was picking up pattern differences caused by attention to two sets of
static features during the cue period. In principle, we can test the impact
of the cue period on classification if we could separate fMRI response for
the cue period vs. the rest of the trial. However, such an analysis is not
practical due to the low temporal resolution of fMRI data and our
event-related design. Hence we performed a control experiment to as-
sess any potential contribution from feature-based attention.

In this experiment, a separate group of participants tracked one of
four possible objects (Fig. 5). Objects 1 and 2 were the same as the
main experiment, whereas Objects 3 and 4 started identically as Objects
1 and 2, respectively, but traversed the color and orientation dimension
in an opposite direction. Two objects were presented on each trial, with
two possible pairings: Objects 1 and 2, or Objects 3 and 4. An auditory
cue instructed participants to track a particular object (see Methods).
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Fig. 5. Schematic of a trial in the control experiment. Two superimposedGabors continuously ch
experiment; Objects 3 and 4 traversed the color and orientation dimension in an opposite direc
pairings). An auditory cue was played at the beginning of the trial instructing participants whi
The behavioral results paralleled those of the main experiment
(Fig. 6). Participants detected the luminance increment equally well
for the four objects (one-way repeated measures ANOVA for Hit-FA,
p N 0.3). For each participant, we constructed contingency tables for
both hits and false alarms for both pairing conditions (Object 1/2 and
Object 3/4), yielding a total of 48 tables. We then performed a χ2 test
for independence and found 2 out of the 48 tests showed a significant
effect (p b 0.05). Again, this analysis showed that there was no system-
atic performance difference at the individual participant level that can
account for the multivariate classification results below.
Multivariate fMRI: control experiment

We performed both within-pairing and cross-pairingMVPA.We ex-
pect the within-pairing classification to yield similar results as themain
experiment. Critically, if decoding in themain experiment was support-
ed by featural differences during the cue period,wewould expect signif-
icant decoding in the cross-pairing classification, because the visual
stimuli were identical during the cue period for Object 1/2 trials and
Object 3/4 trials. However, if decoding was supported by object-level
differences, we would expect reduced or chance-level cross-pairing
classification, because each object had a unique trajectory in the feature
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Fig. 7.Multivariate pattern analysis: control experiment. Group-averaged whole-brain classifi
classify Object 1 vs. Object 2. (B) Performance of a classifier trained to classify Object 3 vs. Obje
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space, and a classifier trained to discriminate one pair of objects should
not generalize well to a different pair of objects.

For the within-pairing classification discriminating Object 1 vs.
Object 2, we found significant classification in bilateral FEF, right IFJ,
and bilateral anterior IPS regions (Fig. 7A). In addition, bilateral superior
temporal regions also exhibited significant classification. Similarly, the
classifier discriminating Object 3 vs. Object 4 revealed significant classi-
fication in bilateral FEF, bilateral anterior IPS, and a left superior tempo-
ral region (Fig. 7B). We note that, however, the classifier for Object 3 vs.
Object 4 showed a reduced spatial extent of above-threshold voxels
than the classifier for Object 1 vs. Object 2. Importantly, we did not
find any above-threshold decoding for the two cross-pairing classifiers
at the same statistical threshold. Even at much more liberal thresholds
(e.g., per-voxel p value at 0.05 with a cluster extent threshold of 30
voxels, which would lead to a whole-brain false positive rate much
greater than 0.05),we still failed to find any significant voxels anywhere
in the brain. These results suggest that the significant decoding ob-
served in the main experiment and within-pairing classification cannot
be attributed to attention to static features during the cue period.
cation map visualized on the PALS atlas surface. (A) Performance of a classifier trained to
ct 4. (C) Summary of activation loci across three searchlight analysis.
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We performed a simple overlap analysis, to find areas that showed
significant decoding across the three sets of searchlight analyses
(main experiment and the twowithin-pairing classifications). Common
areas across the analyses were labeled schematically in Fig. 7C and they
include bilateral anterior IPS, bilateral FEF, and right IFJ. We note that
the right IFJ failed to reach significance in Object3/4 classification
(Fig. 7B). However, given the overall low classification accuracy in this
analysis (see Discussion), and prior research showing the importance
of this area in top-down control (Baldauf and Desimone, 2014; Zanto
et al., 2011), it is likely that the right IFJ plays an important role in
object-based selection.

Discussion

We found that tracking a dynamic object through feature space
evoked strong neural activity in dorsal frontoparietal and occipital visu-
al areas. This finding is consistent with many prior studies showing the
involvement of these areas during visual attention tasks. However, only
in a subset of these active areas, notably FEF, IFJ, and anterior IPS, canwe
use neural activity to reliably decode the specific object that was
attended on a given trial. This finding suggests that neural signals in
these areas encode attentional priority for whole perceptual objects.

Isolating neural signals for object-based selection

It has been difficult to isolate object-level selection without influ-
ence from feature-level selection due to the fact that objects are always
composed of features. As a result, many studies of object-based atten-
tion can be attributed to feature-based attention.

For example, in a popular paradigm where participants were
instructed to attend to either a face or a house in a compound image
(e.g., Baldauf and Desimone, 2014; O'Craven et al., 1999; Serences
et al., 2004), they could potentially attend to different features present
in the face vs. house (e.g., a face contains many curved parts whereas
a house contains mostly rectilinear parts). In our own previous study
of object-based attention,we attempted to equate the features between
two objects by using the same orientated lines to construct simple geo-
metric shapes (Hou and Liu, 2012). However, second-order features
such as vertices and line junctions could not be equated between ob-
jects, raising the possibility that participants attended to these features
during the task. Consistentwith this interpretation,we found significant
decoding of the attended object throughout early visual areas (V1–V4).
Similarly, another recent study using the superimposed face-house
stimuli found that neural activity in early visual cortex (V1–V4) can be
used to decode the attended face or house (Cohen and Tong, 2015).
This finding led the authors to suggest that object-based attention relies
on selection of elemental features in early visual areas. While this con-
jecture is quite plausible in many ecological situations, as different ob-
jects are usually composed of different features, we believe that these
results attest to the adaptive nature of selection, that is, object-based se-
lection can be facilitated by the selection of features if such selection is
helpful. However, we also know that attention is highly flexible such
that it can select objects composed of identical anddynamic features. In-
deed, many psychological theories have highlighted the importance of
objects as the unit of selection (Duncan, 1984; Kahneman et al., 1992;
Pylyshyn and Storm, 1988). Yet the neural basis of object-based selec-
tion has proved difficult to isolate given the potential contribution
from feature-level selection.

Herewe adopted a psychophysical paradigm that has been used pre-
viously to demonstrate “pure” object-level selection (Blaser et al.,
2000). We used dynamic objects that evolved continuously along tra-
jectories in three feature dimensions: color, orientation, and spatial fre-
quency. Both objects traversed through exactly the same feature values
along all feature dimensions, such that no single feature dimension or
feature value can distinguish the two objects. This task thus required
participants to attend to thewhole object instead of elemental features,
whichwas supported by strong psychophysical evidence from the orig-
inal Blaser et al. (2000) study. For example, they found a same-object
advantage in change detection, and also showed that participants
could not attend to two objects simultaneously through the analysis of
response patterns. Furthermore, we also performed a behavioral exper-
imentwith identical setting as themain experiment, except that partic-
ipants were instructed to detect the target brightening on either the
cued or uncued object. We found a strong validity effect such that tar-
gets were better detected on the cued than the uncued object, demon-
strating that the cued object was assigned with a higher attentional
priority than the uncued object (see Supplementary Material). In the
fMRI experiment, we adapted this task and further restricted our imag-
ing data analysis to trials in which participants did notmake a response,
eliminating contributions from decision- and motor-related neural sig-
nals associated with target detection. Thus, the neural signals we mea-
sured were closely related to attentive tracking of perceptual objects
with minimal influence from other processes.

However, there was still a potential confound in that the objects al-
ways startedwith the same set of features on each trial, such that neural
decoding could be due to attention to these features during the cue pe-
riod. We think this explanation is unlikely for two reasons. First, we
used average fMRI response over the entire trial to perform the classifi-
cation analysis, and the cue period only accounted for a small fraction of
time (b10%) in a trial. Second, feature-based attention is known tomod-
ulate early visual cortex in a consistent manner that should lead to ro-
bust classification of the attended feature in occipital visual areas
(Kamitani and Tong, 2005, 2006; Liu et al., 2011; Serences and
Boynton, 2007), which we did not observe. The lack of significant
decoding in early visual cortex hence implies that selection in our task
was not based on modulation of a particular feature dimension or
value. To further assess any potential contribution of feature-level selec-
tion to our results, we conducted a control experiment. Here we intro-
duced two additional dynamic objects that started in identical form as
the original objects but evolved along the color and orientation trajecto-
ries in opposite directions (spatial frequency is not a circular dimension,
thus preventing a similarmanipulation). The control experiment largely
replicated the main experiment in that the within-pairing classification
showed significant decoding in the same set of frontoparietal areas. We
also found significant decoding in the superior temporal region, which
was presumably driven by different neural patterns evoked by the audi-
tory cues. A somewhat unexpected finding is the stronger classification
performancewhen decoding Object 1 vs. 2 than Object 3 vs. 4. This sug-
gests that participants formedmore distinct representations during Ob-
ject 1/2 trials than during Object 3/4 trials. It is not clear what caused
such a difference. It is possible that learning four temporally-varying ob-
jects was difficult, and participants prioritized the Object 1/2 pair over
the Object 3/4 pair during training. Most importantly, however, we
did not find any significant decoding for cross-pairing classification,
suggesting that the featural difference during the initial cue period
was not sufficient to support decoding. We thus conclude that feature-
based attention cannot account for the decoding results in our
experiment.

In addition to feature-level selection, we also need to consider
whether classification can be driven by sensory responses to the cue.
This possibility would predict significant decoding in sensory areas pro-
cessing the cue. In the main experiment, we did not find significant
decoding in early visual areas, presumably due to the small size and
brief duration of the visual cue compared to the grating stimulus, such
that cue-evoked response was masked by stimulus-evoked response
in the visual cortex. In the control experiment, we did observe signifi-
cant decoding in the auditory cortex, presumably because the cue was
the only auditory event in a trial, and we captured relatively clean sen-
sory responses to the cue in the auditory cortex. Using auditory cues
eliminated any image-level differences caused by visual cues, and the
fact thatwe observed significant decoding of the attended object in sim-
ilar frontoparietal areas as the main experiment provided converging
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evidence that these areas represent attentional priority for visual ob-
jects, regardless of the modality of the instructional cue.

Neural representation of object-level attentional priority

Previous research on the neural basis of object-based attention has
employed stimuli and task that were amenable to alternative selection
strategy such as space-based and feature-based selection. Herewe over-
came the intrinsic difficulty in isolating object-based selection by using
an experimental design that equated features and locations between
objects, as well as careful control analyses and experiments. This study
thus provides the first unambiguous evidence that several
frontoparietal areas contain neural signals that encode attentional pri-
ority for perceptual objects.

What is the nature of the priority signals for the abstract objects in
our study? There are at least two possibilities. On the one hand, because
participants were trained to associate feature trajectories with objects,
theneural signals could reflect sequential activation of different features
along these trajectories in the feature space. On the other hand, these
signals could represent feature-invariant identity information for the
attended object, such as an “object file” representation, which was pos-
tulated based on behavioral studies (Kahneman et al., 1992), It seems
unlikely that our results were due to sequential selection of features
for two reasons. First, sequential activation of selected features in the
course of a trial would be difficult to capture with the low sampling
rate of fMRI—only three time points were measured per trial in which
objects spanned many features. Second, our estimate of single-trial re-
sponse essentially averaged across time points within a trial, likely blur-
ring any within-trial dynamics. Thus we believe our results were more
likely due to themaintenance of abstract identity information, as postu-
lated by the theory of object file (Kahneman et al., 1992). Such a scenar-
io is also consistent with single-unit recording studies showing
analogous brain areas in the monkey brain can represent visual catego-
ries defined by arbitrary features (Freedman and Assad, 2006;
Freedman et al., 2001). However, we should note that the above two
scenarios are not mutually exclusive, and further research is needed to
elucidate the contribution of dynamic vs. invariant representation dur-
ing object-based selection. In addition, given that similar brain areas
are also involved in spatial attention (Bisley and Goldberg, 2010), future
work should also examine the relationship between neural encoding of
spatial priority and object priority.

We found neural activity in three areas, FEF, IPS and IFJ, can be used
to decode the attended object. While previous studies have generally
emphasized the involvement of dorsal areas FEF and IPS in top-down at-
tention (Corbetta and Shulman, 2002), recentwork has also highlighted
the role of IFJ in attentional control. For example, Baldauf and Desimone
(2014) found increased functional connectivity between IFJ andposteri-
or visual areas FFA and PPA during a selective attention task using
superimposed face/house stimuli. Zanto et al., applied transcranialmag-
netic stimulation to IFJ and found impaired performance in a working
memory task that required attention to color during encoding (Zanto
et al., 2011). In our own previous study, we also found reliable decoding
of the attended feature in IFJ (Liu et al., 2011). The IFJ is part of the “mul-
tiple-demand” system that is consistently activated in a diverse set of
cognitive tasks (Duncan, 2010) and is also considered to be a shared
node between the dorsal and ventral attention networks in an updated
model of attentional control (Corbetta et al., 2008). Thus the IFJ could be
a critical area in exerting top-down control of attention, presumably in
coordination with more dorsal areas FEF and IPS. The precise functions
subserved by these distinct cortical areas remain to be clarified in future
studies.

Conclusions

In summary, in a task designed to isolate object-level selection, we
found that neural patterns in a set of frontoparietal areas can be used
to decode the attended object. These neural activities likely represent
attentional priority for perceptual objects and exert top-down control
in selecting whole perceptual objects.
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