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Feature-based attention prioritizes the processing of non-

spatial features across the visual field. Classical studies

revealed a feature-similarity gain modulation of sensory

neuron’s activity. While early studies that quantified behavioral

performance have provided support for this model, recent

studies have revealed a non-monotonic, surround suppression

effect in near feature space. The attentional suppression

effects may give rise to a highly limited capacity when selecting

multiple features, as documented by studies manipulating the

number of attended features. These effects of feature-based

attention are likely due to attentional control mechanisms

exerting top–down modulations, which have been linked to

neural signals in the dorsal frontoparietal network. The neural

representation of attentional priority at multiple levels of the

visual hierarchy thus shape visual perception and behavioral

performance.
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Visual perception is highly selective. The most promi-

nent and well-understood selection mechanism is spatial

attention, where sensory input from a restricted part of

visual field attains prioritized processing. Indeed, overt

attention with eye movement is intrinsically spatial.

However, attention can also be directed to non-spatial

visual attributes, such as features and objects [1]. The role

of features in visual attention is epitomized in visual

search, one of the most studied tasks in visual attention,

in which observers need to find a pre-specified target in a

visual array (Figure 1a). This task requires using feature

information to guide spatial attention and thus search

performance is likely influenced by a mixture of both

spatial and feature attention. For this reason, studies of

feature-based attention often resort to a strategy to fix the

locus of spatial attention, by either presenting multiple
www.sciencedirect.com 
features simultaneously in the same spatial location

(Figure 1b) or presenting probes away from the spatially

attended location (Figure 1c). In these paradigms, the

focus of spatial attention is kept constant while the

attended feature is manipulated (e.g. attend to red versus

green color), thus allowing researchers to isolate pure

feature-specific selection. These paradigms have helped

establish classical findings in feature-based attention (see

Box 1), culminating in the feature-similarity gain model: a

visual neuron’s response is monotonically modulated as a

function of the similarity between the attended feature

and the neuron’s preferred feature and such modulation

can spread globally. The present review provides a

focused update of the most recent results regarding the

functional characteristics and physiological underpin-

nings of feature-based attention. For more expanded

treatments, the reader is referred to excellent reviews

of the earlier literature [2,3�].

How does feature-based attention modulate
feature-selective processing?
The central tenet of the feature-similarity gain model

stipulates that attentional modulation of neuronal

response is monotonically related to the similarity

between attended and preferred feature. It is worth

pointing out that this observation was observed in one

cortical area (MT) for one feature dimension (motion)

under a particular stimulus/task protocol. Thus, it is

important to know whether this model describes a general

principle of feature-based attention. In particular, it is

useful to examine the behavioral implications of the

feature-similarity gain model. A number of psychophysi-

cal studies have used various techniques to measure the

behavioral tuning profile of attentional modulation in a

variety of feature dimensions [14–17]. These studies have

generally found a monotonic performance modulation,

with an enhanced processing of the attended feature and

gradual decline of enhancement into suppression for very

different features (Figure 2a). Such results generally

support the feature-similarity gain model, as monotonic

neural modulation should give rise to monotonic perfor-

mance modulation.

However, a recent study showed that feature-based atten-

tion could also modulate performance in a non-monotonic

fashion [18�]. Participants were cued to attend to a color

during a detection task, while the target’s color was

systematically varied in the vicinity of the cued color

in a standard color space. The highest detection accuracy

was observed for the cued color, but a non-monotonic

performance pattern was observed for the other colors

(Figure 2b). This ‘Mexican-hat’ performance modulation
Current Opinion in Psychology 2019, 29:187–192
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Figure 1
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Experimental paradigms to study feature-based attention, with example stimulus displays. (a) A stimulus display in a visual search experiment.

The task is to find the letter ‘T’ among rotated T’s and L’s. (b) A stimulus display in a feature-based attention experiment, showing two spatially

superimposed sets of colored dots. Participants can be instructed to attend to a specific color. (c) Another stimulus display used in feature-based

attention experiment. Participants are instructed to attend to either the upward and downward motion in the right stimulus and ignore the left

stimulus, while perceptual and neural effects of the left stimulus are measured. This protocol is often used to demonstrate the global spread of

feature-based attention.
is interpreted as a surround suppression effect that helps

the isolation of the attended feature, analogous to such

effects in the spatial domain [19]. This effect is clearly

different from predictions of the feature-similarity gain

model and previous empirical findings. One important

difference between these studies is that previous studies

supporting feature-similarity gain usually tested large

feature offsets, whereas this study reporting surround

suppression tested much smaller offset values in a narrow

range. Thus, it is possible that both feature-similarity gain

and surround suppression are at work, but at different

similarity scales. Consistent with this conjecture, a recent
Box 1 Classical findings of feature-based attention

In one of the first demonstrations of feature-based attention,

observers selectively attended to one moving dot pattern in a

superimposed display containing two moving dot patterns [4].

Researchers then measured the strength of motion aftereffects

(MAE) on a test stimulus, and found that attending to the leftward

motion elicited a rightward MAE, and vice versa. Since both the

adapting stimulus and its spatial location are held constant, the

observed modulation of MAE can be attributed to feature-based

attention prioritizing the processing of the attended motion direction.

These psychophysical findings implied that feature-based attention

can modulate feature-selective neural responses in early sensory

areas. This was indeed the case, as shown in experiments in which

monkeys attended to a moving stimulus in one hemifield, while

neuronal responses from area MT evoked by another moving sti-

mulus in the opposite hemifield was recorded [5,6, c.f. Figure 1c].

These experiments showed that MT neuron’s response was

enhanced when the attended and preferred directions were similar

but response was suppressed when they were very different. These

single-unit findings have led to the proposal of the feature-similarity
gain model, in which neuronal response is a monotonic function of

the similarity between the attended feature and the neuron’s pre-

ferred feature, regardless of its receptive field location. The feature-

similarity gain model has proved to be highly influential in studies on

feature-based attention in the following decades. For example, many

subsequent studies have demonstrated a global spread of feature

based attentional modulation in humans [7–13].
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study sampled a relatively large range of colors at a fine

resolution and found both a Mexican hat profile at small

color offsets and further suppression at large color offsets

[20��]. Intriguingly, this study also revealed that the

suppressive surround coincided with the color category

boundary. Thus, for color, a function of surround sup-

pression might be to improve the distinctiveness of the

attended color category. The implication of this category-

based effect for other feature domains such as orientation

and motion direction remains to be investigated.

Using a frequency-tagging method, the same previous

study also observed reduced SSVEP/EEG response to the

suppressed color [18�], demonstrating a surround suppres-

sion effect in gross measures of neural activity. However,

the origin and precise neuronal basis of surround suppres-

sion remain unclear. Indeed, the feature-similarity gain

modulation observed in the classical studies [5,6] is

seemingly incompatible with a surround suppression

effect. Interestingly, some neurophysiological studies

have reported shifts in neuronal tuning toward the

attended feature under certain conditions [21,22], and

model simulations have shown that these shifts could lead

to surround suppression in behavioral performance [20��].
More work is needed to fully characterize the effect of

feature-based attention on behavior and neural popula-

tion responses.

Capacity of feature-based attention
Attention is widely believed to be an adaptive mechanism

that copes with the brain’s limited capacity via selective

processing. Yet, the selection itself may also be subject to

certain capacity limits. Selecting one task-relevant fea-

ture has an obvious advantage compared to either select-

ing none or selecting the wrong feature. However, it is

less clear what occurs when observers try to select multi-

ple features.
www.sciencedirect.com
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Figure 2
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(a) Feature cueing effect as a function of the similarity between cued and target feature, measured as angular offset on a color wheel (adapted

from Ref. [16]). The monotonic decline is consistent with feature-similarity gain model. (b) Performance as a function of the similarity between two

attended colors (adapted from Ref. [18�]), showing a non-monotonic surround suppression effect. (c) Detection threshold in an experiment

manipulating the number of feature precues (zero, one, two). Note lower threshold indicates better performance (adapted from Ref. [31�]).
Previous studies in visual search have provided somewhat

conflicting results. On the one hand, studies have found that

searching for two targets is less efficient than searching for

one target [23,24], suggesting a limit in attending to two

features. On the other hand, other studies have claimed that

participants can maintain at least two active attentional

templates [25–27]. These studies used very different exper-

imental paradigms and examined different aspects of per-

formance (e.g. search time versus distracter cost), making it

difficult to directly compare them. The complexity of visual

search tasks (see earlier discussion) also makes it hard to

ascertain the processing stages that give rise to the limit [28].

A number of studies have investigated the capacity of

feature-based attention in non-search tasks. Indeed, ear-

lier studies have shown that attending to two different

features (e.g. upward and downward motion) are more

difficult than attending to a single feature when these

features are simultaneously presented in different loca-

tions [29,30]. In these studies, subjects had to split their

spatial attention to two locations and often need to

monitor the features over extended time periods. Thus

performance limits could arise from an impairment in

simultaneously processing two different features, as

opposed to selecting [30]. To address these concerns, a

number of studies employed a feature detection task in

noise, while varying the number of pre-cued features to

direct participants’ attention to either one or two features

[31�,32]. Compared to a baseline without pre-cue,
www.sciencedirect.com 
attending to one feature improved performance, whereas

attending to two features also improved performance, but

at a significantly lower level than attending to one feature

(Figure 2c). In these tasks, only a single target was

presented on each trial, thus performance limit is likely

due to selection, as opposed to processing multiple tar-

gets. Interestingly, the performance benefit for two-cue

trials can be predicted by a simple model where partici-

pants simply picked one feature to attend on these trials,

such that their performance was a mixture of one-cue and

no-cue conditions. This observation suggests that parti-

cipants can only attend to a single feature at a time—a

very severe selection limit. Such a limit might be due to

an inability to enhance multiple features if attending to

each feature evokes large zones of suppression, due to

both feature-similarity gain and surround suppression. In

addition, because working memory is believed to contain

representations that bias attentional selection [33], the

observed selection limit is also consistent with sugges-

tions that working memory contains a single active item in

the focus of internal attention [34,35]. Further research is

needed to understand the locus of this attentional limit, at

both the functional and physiological level.

Neural mechanisms of feature-based
attentional control
So far this discussion of feature-based attention has

focused on its effect in perceptual performance and

neural responses in early visual system. The fact that
Current Opinion in Psychology 2019, 29:187–192
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Figure 3
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(a) Key brain areas in the visual cortex and frontoparietal network, shown on an inflated right hemisphere. Visual areas include V1, ExS

(extrastriate cortex), MT+. Frontoparietal areas include IFJ (inferior frontal junction), FEF (frontal eye field), IPS (intraparietal sulcus). IPS1-4 are

topographic areas defined in independent mapping protocols. aIPS is the anterior portion of IPS that is often activated in attention tasks. (b)

Decoding of attended color in visual and frontoparietal areas. All areas showed significant above-chance decoding accuracy (adapted from Ref.

[42]). (c) Effect of TMS to posterior IPS on a task requiring feature selection (attention) and a control task (baseline, adapted from Ref. [45��]).
attentional selection can be driven by task goals (e.g. by

instructing participants to attend to a specific feature)

raises an obvious, and important, question: what are the

neural mechanisms that control feature-based selection?

It is useful to briefly consider the analogous question in the

spatial domain, where it is relatively well established that a

dorsal frontoparietal network (FPN) controls spatial atten-

tion. Early studies revealed preparatory neural activity in

these areas linked to spatial cues, demonstrating the endog-

enous nature of such signals [36]. Later studies provided

more mechanistic insights regarding the representational

basis of these neural signals. A key discovery is the finding

that FPN areas contain topographical maps of visual space

[37]. These spatiotopic maps thus provide a natural sub-

strate to represent spatial priority, for example, by

highlighting locations on these high-level maps and send-

ing spatially specific feedback to sensory areas [38]. Ana-

tomical evidence supporting this scheme has been found in

white matter connection patterns from posterior parietal

areas to visual areas [39]. Functional evidence has been

found in microstimulation studies in monkeys and TMS

studies in humans, which have shown a causal link between

frontoparietal neural activity and spatial attention [40,41].

These observations and concepts have informed the stud-

ies of feature-based attention. Given the evidence that

spatial priority is represented by spatiotopic signals in high-

level areas, feature-specific signals likely also exist in high-

level brain areas that represent featural priority. Several

studies have used the two superimposed feature paradigm

(see Figure 1b) and compared neural activity when parti-

cipants attended to either feature [42,43]. In this design,

because the physical stimulus is kept constant, any

observed neural differences necessarily reflect the modu-

lation due to attention. Perhaps not surprisingly, overall

fMRI BOLD amplitude did not show difference when
Current Opinion in Psychology 2019, 29:187–192 
attention was directed to either feature, as these features

(e.g. leftward versus rightward motion, red versus green

color) should be equivalent a priori. However, a classifier

that extracts multivoxel patterns arising from small differ-

ences between conditions [44] were able to reliably decode

the attended feature. Importantly, these pattern differ-

ences were observed in the FPN, including intraparietal

sulcus and areas along the precentral sulcus (Figure 3a & b).

Thus, neural signals in these areas possess featural selec-

tivity, which qualifies them as candidates for representing

priority. The contribution of FPN to feature-based atten-

tionwas furtherexamined ina morerecentstudy by relating

FPN activity tobehavioral performance.Participants in this

study performed a difficult detection task that required

selection of a specific motion direction [45��]. In an fMRI

experiment, it was observed that neural patterns in FPN for

attending to different directions were more discriminable

on correct than on incorrect trials. A follow-up TMS study

targeted one FPN area, the posterior IPS, and found that

neurodisruption impaired behavioral performance on a task

requiring feature selection but did not alter performance on

a control task that did not require feature selection

(Figure 3c). These results demonstrate the behavioral

relevance of FPN neural activity and their causal role in

directing feature-based attention.

A further question concerns the relationship and potential

functional differentiation among FPN areas, which has

not been extensively studied in the realm of feature-

based attention. A recent fMRI study investigated net-

work effective connectivity underlying global feature-

based attention (Figure 1c), using dynamic causal model-

ing and Granger causality modeling [46��]. These meth-

ods allow the assessment of the direction of information

flow among brain regions. A series of extensive analyses

revealed that the inferior frontal junction (IFJ) provided

the source of information flow for both parietal and visual
www.sciencedirect.com
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areas. Thus, the IFJ might serve as the ultimate source of

control signals for top–down feature-based attention.

Studies of object-based attention are also informative as

an object can be defined as a collection of features.

Hence, object-based attention likely relies on similar

mechanisms as feature-based attention. In a MEG study,

participants were instructed to attend to either faces or

houses in a superimposed face-house movie. Several

frontoparietal areas showed object selectivity [47�]. Criti-

cally, the IFJ showed synchronized activity with ventral

visual areas (FFA and PPA) and the phase of MEG signals

in IFJ preceded those in ventral visual areas. This timing

difference thus further supports the notion that IFJ

coordinates the selection of visual objects in ventral visual

areas. Corroborating evidence has also been found in a

single-unit study when monkeys searched for specific

objects [48]. In a further study, participants attended to

one of two superimposed objects that dynamically varied

in multiple feature dimensions [49]. Even with this highly

abstract definition of object-hood, FPN neural activity

patterns were found to discriminate the two different

objects when they were attended. These results thus

suggest that FPN also plays an important role in control-

ling object-based selection and neural signals in these

areas can represent highly abstract information.

Conclusions
Classical studies of feature-based attention have

informed an overarching framework as encapsulated by

the feature-similarity gain model. Recent studies have

expanded this framework by demonstrating a surround

suppression effect in feature space and characterizing the

capacity limitations of feature-based selection. These

perceptual effects of feature-based attention are likely

the consequences of attentional modulations of neural

activities along the visual hierarchy that are controlled by

the frontoparietal network. How neural modulations give

rise to a particular performance profile and the precise role

of distinct areas in the frontoparietal network remain

some of the key questions for future research.
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