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Computational models of decision making typically assume as people deliberate
between options they mentally simulate outcomes from each one and integrate valua-
tions of these outcomes to form a preference. In two studies, we investigated this
deliberation process using a task where participants make a series of decisions between
a certain and an uncertain option, which were shown as dynamic visual samples that
represented possible payoffs. We developed and validated a method of reverse corre-
lational analysis for the task that measures how this time-varying signal was used to
make a choice. The first study used this method to examine how information processing
during deliberation differed from a perceptual analog of the task. We found that
participants were less sensitive to each sample of information during preferential
choice. In a second study, we investigated how these different measures of deliberation
were related to impulsivity and drug and alcohol use. We found that although properties
of the deliberation process were not related to impulsivity, some aspects of the process
may be related to substance use. In particular, alcohol abuse was related to diminished
sensitivity to the payoff information and drug use was related to how the initial starting
point of evidence accumulation. We synthesized our results with a rank-dependent
sequential sampling model which suggests that participants allocated more attentional
weight to larger potential payoffs during preferential choice.
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Deliberation plays a critical role in human be-
havior. It is during deliberation that valuations of
options and their attributes like outcomes and
probabilities (Kahneman & Tversky, 1979) or

time (Dai & Busemeyer, 2014; Dai, Pleskac, &
Pahcur, in press; Scholten & Read, 2010) are
transformed into a choice. These choices and the
speed in making them (response times) govern
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whether someone appears risk averse or risk seek-
ing (Weber, 2010), impulsive or cautious (Nigg,
2000), or distracted or focused (Miller, 2000).
These choices also help individuals learn about
their environment and make better decisions in the
future (Pleskac, 2016). Thus, a better mechanistic
understanding of deliberation should be revealing
in terms of these many vital aspects of human
behaviors. A common hypothesis is that deliber-
ation is a sequential sampling process, where peo-
ple sequentially sample information about the op-
tions and accumulate the information as evidence
to make a choice. When the quantity of accrued
evidence reaches a threshold, the appropriate
choice is made, which also determines the re-
sponse time (Busemeyer & Johnson, 2004; Kra-
jbich, Armel, & Rangel, 2010; Shadlen, Kiani,
Hanks, & Churchland, 2008).

There is good evidence that this sequential sam-
pling process provides an accurate characteriza-
tion of deliberation during perceptual decisions
both at the computational (Ratcliff & Smith,
2015) and perhaps even at the neural level (Gold
& Shadlen, 2007; Forstmann, Ratcliff, & Wagen-
makers, 2016). However, investigations of risky
choice have predominantly focused on static mod-
els (e.g., Tversky & Kahneman, 1992). Alterna-
tively, they have treated dynamic models as static,
testing, for instance, how well the models explain
choices but ignoring response times (e.g.,
Rieskamp, 2008). Either way, it is less clear
whether the same or similar process is used during
preferential decision making, where people make
decisions without objectively correct answers,
such as choosing between snack items, investment
opportunities, or places to live.1 Certainly there
are strong indications that, like perceptual choice,
a sequential sampling process is used for prefer-
ential decision making (e.g., Busemeyer & Died-
erich, 2002; Krajbich & Rangel, 2011; Summer-
field & Tsetsos, 2012). Under such a scenario,
possible outcomes or consequences from the dif-
ferent alternatives are sampled (i.e., come to
mind), evaluated, and compared across alterna-
tives from moment to moment. This comparison
is accumulated to form a preference for a partic-
ular alternative.

Such a sequential sampling process is inher-
ently dynamic, yet previous studies have largely
examined this process using choice options with
static, symbolic descriptions of, for example,
monetary gambles (Rieskamp, 2008), hypotheti-
cal choices between consumer goods (Krajbich et

al., 2010; Roe, Busemeyer, & Townsend, 2001),
or in some cases decisions based on a relatively
large set of past experiences (Busemeyer &
Townsend, 1993; Busemeyer, 1985; Diederich &
Busemeyer, 1999; Jessup, Bishara, & Busemeyer,
2008). Sometimes the dynamics of information
acquisition are inferred via eye tracking (Ca-
vanagh, Wiecki, Kochar, & Frank, 2014; Krajbich
& Rangel, 2011) or indirectly via experimental
manipulations (Diederich, 2016). As an alterna-
tive approach, we adapted a method from studies
of perceptual decision making that have used so-
called expanded judgment tasks. These tasks
make explicit the samples of information that par-
ticipants need to use to make a decision (i.e.,
Brown, Steyvers, & Wagenmakers, 2009; Irwin,
Smith, & Mayfield, 1956; Newsome, Britten, &
Movshon, 1989; Pietsch & Vickers, 1997; Smith
& Vickers, 1989; Tsetsos, Usher, & McClelland,
2011; Teodorescu, Moran, & Usher, 2016; Vick-
ers, Burt, et al., 1985; Vickers, Smith, et al., 1985).
Thus, we made the stimulus itself dynamic and
amenable to a sequential sampling process.

The specific task we used was the Flash Gam-
bling Task (FGT; Zeigenfuse, Pleskac, & Liu,
2014). The FGT uses dynamic dot stimuli
where each option is represented by an array of
randomly positioned dots. The value of each
option at each instant is equal to the number of
dots in the display at that time point. For exam-
ple, a certain option with a value of 130 points
has a fixed number of 130 dots, whereas the
number of dots in the uncertain option are dy-
namically updated every 50 ms via draws from
an unknown payoff distribution (we used a
Gaussian distribution). This dynamic updating
allows people to integrate the payoff informa-
tion over time to form a preference between the
two options and thus provides a method to study
the deliberation process during preferential
choice.2

We report two studies that used the FGT to
characterize the deliberation process during

1 Sometimes these types of decisions are called economic
decisions (Summerfield & Tsetsos, 2012), or value-based
decisions (Rangel, Camerer, & Montague, 2008).

2 The FGT is a specific type of preferential choice some-
times referred to as decision making under uncertainty
where each option does not produce the same outcome
when chosen, but instead can produce one of a set of
possible outcomes where the probability of any given out-
come is not known (Luce & Raiffa, 1957).
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preferential choice. In Study 1, we compared
the deliberation process during preferential
choice to that of perceptual choice. We used the
same stimulus in both tasks, but with partici-
pants in the preferential task making a choice
reflecting a value judgment while those in the
perceptual task making a choice based on a
perceptual attribute. Crucially, participants’
goals in both tasks were aligned such that they
should choose the option that showed the high-
est average number of dots in both tasks. Past
studies that have made this perceptual versus
preferential comparison have found that the ba-
sic deliberation process for both types of deci-
sions can be described as a sequential sampling
process (Dutilh & Rieskamp, 2016; Tsetsos,
Chater, & Usher, 2012; Zeigenfuse et al., 2014).
However, despite the aligned goals in the two
tasks, there were also systematic differences
which were largely isolated to how the sampled
information contributes to the accumulating ev-
idence (Dutilh & Rieskamp, 2016; Zeigenfuse
et al., 2014; see also Tsetsos et al., 2012). We
sought to replicate these results and go beyond
these studies by examining the online process-
ing of the sampled information during the two
types of decisions. To do so, we developed and
validated a method of reverse correlation anal-
ysis to characterize the linkage between the
sampled information and the ultimate choice.

In Study 2, we investigated individual differ-
ences in the deliberation process during prefer-
ential choice. Our motivation to do so was
partly in response to recent calls for behavioral
decision making theories to not just model the
choices of the average subject but to better
understand and model variability within and
between people (Hertwig & Pleskac, 2018; Re-
genwetter & Robinson, in press). In addition,
previous work has suggested a relationship be-
tween laboratory-based measures of risk taking
and real-world risky behavior like drug abuse
(e.g., Bechara et al., 2001; Lejuez et al., 2002;
Pleskac, 2008; Rogers et al., 1999; Stout, Buse-
meyer, Lin, Grant, & Bonson, 2004). Moreover,
a close inspection of the facets of impulsivity
reveals that at least at the descriptive level there
appears to be some relationship with the prop-
erties of deliberation (Whiteside & Lynam,
2001). Thus, we evaluated the relationship be-
tween our measures of the deliberation process
and measures of impulsivity and self-reported
measures of drug and alcohol use. Anticipating

the results, we found that aspects of the delib-
eration process and impulsivity were not corre-
lated. However, both uniquely account for sub-
stance use, suggesting our understanding of the
deliberation process can play an important role
in a multimethod approach to understand a per-
son’s actions and beliefs (Hopwood & Born-
stein, 2014).

Study 1: Characterizing Deliberation
During Preferential Choice by Comparing

It With Perceptual Choice

Our first study compared deliberation during
preferential and perceptual choice. As men-
tioned earlier, direct comparisons of these deci-
sion types have shown that deliberation in both
is well described by a sequential sampling pro-
cess, but that there are also systematic differ-
ences (Dutilh & Rieskamp, 2016; Zeigenfuse et
al., 2014). These differences became apparent
when the choice and response times were mod-
eled with a drift diffusion model (DDM; Rat-
cliff & Smith, 2015), which decomposes choice
behavior into meaningful parameters that char-
acterize the deliberation process (see Table 1).3

In this case, the differences were isolated to the
drift rates of evidence accumulation. Zeigenfuse
et al. (2014) found that compared with the per-
ceptual condition, in the gambling condition (a)
more evidence accumulated in a given time
interval for the uncertain alternative (i.e., the
drift rate was higher) and (b) evidence accumu-
lation rates were less affected by changes in the
expected value of the uncertain option. These
two effects worked together so that during pref-
erential choice the average accumulation rate
was toward the uncertain option, even when its
expected value was below that of the certain
option (i.e., risk-seeking). Dutilh and Rieskamp
(2016) also found drift rates were less affected
by changes in the value of the uncertain option,
but did not find drift rates were shifted toward
the uncertain option. Similarly, risk-seeking be-
havior was reported when payoffs are presented

3 The DDM used was a Wiener process with drift and two
absorbing boundaries that includes a non-decision time to
account for residual processing time. Trial-level variability
in the parameters (e.g., Ratcliff & Rouder, 1998) was not
included as the focus was on how the core parameters of the
process differ between the tasks. For these reasons, the same
model DDM is used in this paper.
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sequentially (Tsetsos et al., 2012). In general,
these results seem to conflict with the canonical
result that people are risk averse in the domain
of gains, that is they prefer a certain payoff over
a lottery that has a higher expected value (Kah-
neman & Tversky, 1979). This difference pro-
vided further motivation for the study. We thus
sought to replicate these results.

We also sought to go beyond past these in-
vestigations by better measuring how informa-
tion was used to make a decision. A limitation
of these DDM analyses is that the sampling
process is still unobserved. The strength of the
FGT is that by explicitly providing participants
continuous stimulus samples, it allows a more
direct investigation of the online processing of
the sampled payoff information. To do so, we
adapted a reverse correlation technique from
Kiani, Hanks, and Shadlen (2008) and Zyber-
berg, Barttfeld, and Sigman (2012) to study the
time-varying contribution of the stimulus sam-
ples to choice. We investigated how differences
in the estimated rate of evidence accumulation
(from DDM) translates to the relationship be-
tween the observed samples of stimulus and
choice. Doing so allowed us to identify how
sensitivity to the samples of information
changes between decision types as well as any
possible bias in information usage when choos-
ing the uncertain or certain option.

Method

Participants. We used flyers and online
advertisements on social media to recruit 40
native English-speaking participants from the

Michigan State University community and sur-
rounding Lansing area. Our sample size target
was based on previous studies that also targeted
40 participants (Dutilh & Rieskamp, 2016;
Zeigenfuse et al., 2014). We lost the demo-
graphic data of 3 participants because of a pro-
gramming error, so the following demographic
information applies to 37 participants, consist-
ing of 29 women and 8 men between 18 and 28
years old (M � 22.0, SD � 5.1). In terms of
race and ethnicity, 75.7% described themselves
as White, 13.5% as Black or African American,
8.1% as Asian or Southeast Asian, and 2.8%
described as having more than one race. Partic-
ipants were paid $10 per hour plus a $0–5
performance bonus. The study protocol was ap-
proved by the Institutional Review Board at
Michigan State University.

Flash gambling task. The stimuli were gen-
erated in MATLAB using Psychophysics Toolbox
Version 3 (Brainard, 1997; Kleiner et al., 2007).
The stimuli were displayed on a LCD monitor
with a resolution of 1280 � 1024 in a sound
attenuated booth. To maintain a fixed viewing
distance, participants were asked to rest their chin
in a head mount that was secured to the desk
48.5 cm from the screen.

In general, we constructed the tasks to resem-
ble a psychophysical discrimination experiment
using the method of constant stimuli. In the
FGT, participants chose between two options: a
certain or an uncertain alternative. Both options
were represented by circular displays of white
dots on a black background (see Figure 1). Each
display had a diameter of 6.1° visual angle, with

Table 1
Main Parameters of the Drift Diffusion Model and Their Substantive Interpretations

Parameter Description

Threshold separation, � The separation between the choice thresholds with � � 0. With this parameterization the
choice threshold for the uncertain option is set at �, and the choice threshold for the
certain option set at 0. The threshold separation measures the degree of response
caution with lower thresholds permitting faster, but less consistent choices.

Relative start point, � The location of the starting point for evidence accumulation relative to the two thresholds,
with 0 � � � 1. The relative starting point indexes an initial bias for either response, with
higher values of � indicating greater bias to choose the uncertain option.

Drift rate, � The rate at which evidence accumulates in favor of the uncertain option. The sign of the
drift rate indicates the average direction of the evolution, with negative values
indicating evidence for the certain alternative and positive values indicating evidence
for the uncertain alternative.

Non-decision time, 	 The amount of contaminant time in the observed response times beyond the deliberation time
specified by the DDM, with 	 � 0. The non-decision time includes the time spent on
encoding the stimulus, executing a response, and any other contaminant processes.
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one located 6.75° to the left of a central fixation
and the other 6.75° to the right. Each dot had a
diameter of 0.023°. The certain and uncertain
alternatives were labeled for the participants at
the beginning of each block.

The uncertain alternative had a dynamic dis-
play of dots that changed every 50 ms (20 Hz).
At each update, the number of dots was drawn
from a normal distribution and then shown in
random locations in the display. We truncated
the normal distribution at 
2 standard devia-
tions. This ensured the uncertain alternative al-
ways had at least 30 dots. The certain alterna-
tive always had 130 dots that were randomly
placed within the respective circular aperture,
with their positions also updated every 50 ms
(20 Hz).4

Participants were instructed that each dot was
worth 1 point and that they were to evaluate the
certain and uncertain (risky) option to form an
impression of each option. They were told to
choose between the two options by pressing a
left or right key on a computer keyboard. If the
uncertain option was chosen, the payoff was a
random draw that corresponded to the next sam-
ple that would have been shown and that deter-
mined the number of points they earned. If the
certain option was chosen then the participant
earned 130 points. After the choice, the payoff
from the chosen option was displayed as feed-
back. The total number of points participants

earned were accumulated across all the trials
and not shown. At the end of the experiment,
the point totals were scaled to give a bonus
between $1–5.

Perceptual task. The perceptual task was
identical to the FGT except participants were
told to identify the option that had the higher
number of dots on average. Technically, we set
this to be determined by the observed sample
mean. We sought to match the payoff structure
of the perceptual task to the FGT. Thus, during
the perceptual task they received a payoff equal
to the mean number of dots in the distribution
for the chosen option (i.e., �), which was dis-
played as feedback. With this structure, goals in
the FGT are aligned with the perceptual task
such that in both cases participants should strive
to choose the option with the higher expected
value.

Design and procedures. We manipulated
the type of decision between participants with
half the participants randomly assigned to the
FGT and the other half to the perceptual task. At
the trial level, we also factorially manipulated
(within-participants) the mean and standard de-

4 This is a deviation from Zeigenfuse et al. (2014), where
the randomly placed dots in the certain alternative remained
in a fixed position throughout the trial. Here, we made the
certain alternative dynamic to help control for differences in
visual after–effects between the two alternatives.

Figure 1. Schematic diagram of FGT stimulus. Participants viewed a fixation point for
500 ms, followed by the two dynamically updating options until they responded with their
choice, which was followed by the feedback. See the online article for the color version of this
figure.
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viation of the number of dots in the uncertain
option. The mean had five levels (� � 100, 115,
130, 145, and 160) and the standard deviation
had three levels (� � 5, 25, and 45), and we
presented 64 trials per experimental condition.

After agreeing to participate in the study, par-
ticipants received a brief introduction to the task
informing them that they would make many de-
cisions about two options represented by arrays of
dots. We kept the specific task vague in the intro-
duction to manipulate between subjects whether
people were in the gambling or perceptual condi-
tion. Following the introduction, participants were
seated at a desk in a sound-attenuated booth and
instructed how to use and adjust the head rest.
Participants then received more precise instruc-
tions about the task and completed 30 practice
trials of either the FGT or the perceptual task. The
practice trials were identical to the actual trials,
except that an additional description was used to
emphasize the difference between the two options:
the descriptive label “Same number of dots” was
placed below the certain option and “Changing
number of dots” was placed below the uncertain
option.

Once participants confirmed they understood
the task, they completed a total of 960 trials (in 12
blocks of 80 trials). Figure 1 outlines the general
task procedure. The location of the certain and
uncertain option (right or left side of the screen)
was fixed within a block and counterbalanced
across blocks and displayed to participants at the
start of each block. In each trial, participants first
viewed a fixation point for 500 ms, followed by
the two dynamically updating options until they
indicated their choice. They then received feed-
back based on the condition they were in. After
completing either the FGT or the perceptual task,
participants also completed a set of self-report
measures related to risk taking and impulsivity
and the Balloon Analogue Risk Taking Task
(BART; Lejuez et al., 2002). This last set of mea-
sures were collected as pilot testing in preparation
for Study 2. They are described in more depth in
the method section of Study 2. Because the cur-
rent study is underpowered for examining corre-
lations with these measures we do not report fur-
ther on these measures in this study.

Analyses. Our statistical analyses for both
the behavioral effects and computational analyses
employed a multilevel modeling approach. We fit
the models and conducted statistical inference us-
ing Bayesian estimation techniques (Gelman, Car-

lin, Stern, & Rubin, 2014; Kruschke, 2014). In
each of the analyses, Markov Chain Monte Carlo
(MCMC) methods were used to generate esti-
mates from the posterior distribution of each pa-
rameter. All chains were inspected for the repre-
sentativeness of the posterior distribution both
visually and with the Gelman-Rubin statistic. We
also inspected the autocorrelation within chains to
confirm their ability to provide stable and accurate
estimates of the distributions. In reporting results
from the models we report the mean of the pos-
terior distribution of the parameter or statistic of
interest and the 95% equal tail credible interval
(CI) around each value.

General linear model analyses. At the be-
havioral level, we used a hierarchical general
linear model to examine the effect of the exper-
imental manipulations on choice and response
times. The mean number of dots in the uncertain
option, �, and the standard deviation in the
number of dots in the uncertain option, �, were
within-subject variables, and the task frame
(perceptual vs. gambling) was the between-
subjects variable. We used a logistic link for
choice data and a normal link for response time
data. The models were estimated using
RStanArm using the standard priors (RStanArm
Version 2.9.0–4, 2016). The MCMC estimation
involved generating 6 chains of 2000 steps es-
timated from the posterior distribution of each
parameter. The predictor variables were unstan-
dardized in regressions for all studies, and we
report b, the unstandardized coefficient which
quantifies the effect of the experimental condi-
tions on the measured criterion values. In sim-
ple comparisons between groups we used
Kruschke’s (2013) Bayesian comparison of two
groups.

Drift diffusion analyses. We used a DDM
model to decompose choices and response
times into meaningful parameters that charac-
terize the deliberation process (see Table 1). To
do so, we embedded our DDM analysis within a
hierarchical framework (Vandekerckhove, Tu-
erlinckx, & Lee, 2011; Wabersich & Vandeker-
ckhove, 2014) and used Bayesian estimation
techniques (Kruschke, 2014; Lee & Wagen-
makers, 2013) to estimate the model parame-
ters. We parameterized the DDM so that the
means (and variances) of each of the free pa-
rameters (threshold separation, relative start
point, drift rate, and nondecision time) at the
group level could differ between the preferential
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and perceptual tasks. This allowed us to char-
acterize what effect, if any, the two tasks have
(holding the stimulus constant) on the model
parameters. The comparison is not trivial in that
in principle the posterior distributions of each of
the parameters can completely overlap showing
no difference between the task types. This
method was verified by model simulation and
recovery analysis (see Appendix of Pleskac et
al., in press).

The JAGS code with the priors specified for
the participant and group level parameters are
given in the Open Science Framework reposi-
tory for this paper. In general, we used vague
and uninformative parameters, but the conclu-
sions we report are robust to reasonable changes
in the priors. The models were estimated using
the rjags package with the JAGS Wiener mod-
ule (Wabersich & Vandekerckhove, 2014), an
extension for the Just-Another-Gibbs-Sampler
(JAGS; Plummer, 2003) in R. In the MCMC
estimation, we generated 3 chains of 5000 steps
estimated from the posterior distribution of each
parameter. We parametrized the model to ex-
amine how the decision frame manipulation im-
pacted the model. Based on past results, only
the drift rate was allowed to vary freely between
the different means of the uncertain option (Du-
tilh & Rieskamp, 2016; Zeigenfuse et al., 2014).
Note in a different model we also examined
how the manipulation of the variance impacted
the parameters and found no credible effect, just
as in the behavioral data, so we focused on a
model that collapses across the variance manip-
ulation.

Reverse correlation analysis. We used a
reverse correlation technique to investigate the
time-varying contribution of the samples of in-
formation to choice (Kiani et al., 2008; Zyber-
berg et al., 2012). The technique is based on the
actual samples of dots shown at each time point
t for the uncertain option, y(t). Recall these
samples were normally distributed with a mean
of � � 100,115,130,145, and 160 and standard
deviation � � 5, 25, and 45. Across all trials the
number of dots in the certain option was set at
c � 130. For these analyses we focus on the trials
where � � 130, � � 45. Although trials from the
other conditions lead to the same or similar con-
clusions, these trials (high variance, equal mean
number of dots for the two options) proved clear-
est in reaching reliable conclusions in how the
sampled information impacted choice.

For each trial, we calculated the deviation of
each sample from the mean of the uncertain
option in that condition �,

d(t) � y(t) � �. (1)

Note that in the � � 130 condition, � is also
the number of dots in the certain option. Thus,
d(t) is the time-varying difference signal be-
tween the uncertain and certain option. We
grouped d(t; vectors of different lengths) into
two groups: (a) when the uncertain option was
chosen dU(t) and (b) when the certain option
was chosen dC(t). We refer to these vectors as
deviation profiles.

To better understand the properties of this
time-varying signal, we simulated a simple se-
quential sampling model where a decision must
be made between a certain option worth k �
130 and an uncertain option with a � � 130 and
a standard deviation of � � 45. The model
implemented a simple accumulate-to-bound
process where at each stimulus frame the ob-
served sample information from the uncertain
option y(t) was compared with the magnitude of
the certain option k, and these values were ac-
cumulated to form a preference,

P(t) � P(t � �) � [y(t) � k], (2)

where 
 is a small increment in time (here, 
 �
0.05 s). Once preference P(t) reached the upper
or lower threshold (� or ��, respectively) then
a choice is made accordingly. We simulated this
model using a threshold of � � 100. The model
also included a delay between when the re-
sponse was recorded and when a threshold level
of evidence was reached (i.e., nondecision
time). In addition, we assumed there was vari-
ability between simulated trials in the location
of the starting point and the nondecision time
delay.

Figure 2 shows, for illustration, the ex-
pected deviation profiles time-locked to stim-
ulus onset (A) and response (B), conditioned
on the choice. They show that the expected
deviation profiles will reflect the chosen op-
tion such that when the uncertain option was
chosen the deviations will be on average pos-
itive, and when the certain option is chosen
they will be on average negative. This is
observed with the profiles time-locked to
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stimulus onset and time-locked to response.
The latter profiles illustrate a feature of se-
quential sampling models for two-alterna-
tives, which is that the last sample before
choice is consistent with the choice. The early
bump in the profiles time-locked to the stim-
ulus onset is attributable to the trial-level
variability in start point and nondecision time.
These two components lead to different de-
lays in evidence accumulation from trial to
trial and thus by averaging across the delays
an early bump is created. Similarly, trial-level
variability also explains the shark-fin shaped
response-locked profiles.

Decision kernel. We derived two additional
measures from these profiles to index how the
sample information is used. One measure is the
decision kernel, defined as the distance between
the deviation profiles when the uncertain and
certain alternative was chosen,

dDK(t) � dU(t) � dC(t). (3)

A similar measure has been used to measure
sensitivity to perceptual information in the ran-
dom dot motion tasks (Kiani et al., 2008; Zy-
berberg et al., 2012). The decision kernel dDK
measures the total contribution of the samples at

each frame to choice. Averaging the decision
kernel across time (d̄DK) measures the average
sensitivity of a participant to the FGT stimulus.
The larger the decision kernel the more sensi-
tive to the sample information. We used the
decision kernel time-locked to stimulus onset to
calculate the average decision kernel per partic-
ipant.

Decision bias. The deviation profiles can
also be used to measure to what extent the
samples of information were used in a biased
fashion. To do this we calculated the midpoint
between the two average levels of evidence,

dB(t) � [dU(t) � dC(t)] ⁄ 2. (4)

In the � � 130 condition, dB(t) reflects the
relative contribution of the information from the
uncertain option toward participants’ decisions
hence we label it decision bias. Because both
options have 130 dots on average, dB(t) � 0
would indicate unbiased processing, whereas a
negative dB(t) value would indicate a bias for
the uncertain option. As with the average deci-
sion kernel, we used the decision-bias time-
locked to stimulus onset to calculate the average
decision bias per participant (d̄B).
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Figure 2. Expected deviation profiles for choices of uncertain option (top/blue) and certain
option (bottom/red) for a simulated accumulate to bound model during the FGT time-locked
to stimulus onset (A) and response (B). The mean of the uncertain option was set at � � 130,
the standard deviation was set at � � 45, the value of the certain option was set a k � 130,
and the sampling rate was 20 Hz. For model parameters, the threshold was set at 100, the start
point was at 0 with trial-level variability (uniform distribution with a width of 90), and the
average nondecision time was 0.2 s with trial-level variability (uniform distribution with a
width of 0.4 s). Results are based on 50,000 simulated runs. See the online article for the color
version of this figure.
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Results

Behavioral analysis. As a first step in our
analyses, we compared choice and response
times for perceptual and preferential decisions.
Five participants exhibited choice behavior that
was completely insensitive to the mean value of
the uncertain option so we removed those par-
ticipants from any further data analysis. Thus,
the results are based on data from 35 partici-
pants.

Figure 3 illustrates that participants were sen-
sitive to the difference in mean number of dots
between the two options. As expected, the pro-
portion of choosing the uncertain option in-
creased with the mean number of dots in that
option (b � 1.06, CI � [0.98, 1.15]). Moreover,
participants chose the uncertain option less of-
ten in the perceptual compared with the gam-
bling frame (b � �0.64, CI � [�1.19, �0.12]).
Consistent with past comparisons between per-
ceptual and preferential choice, there was a
trend for an interaction between decision type
and the mean of the uncertain option (b � 0.11,
CI � [�0.01, 0.24]). The interaction suggests
differential sensitivity to the mean number of

dots in the uncertain option. In particular, par-
ticipants were more likely to choose the uncer-
tain option in the gambling condition when the
it had 100 dots on average. However, as the
mean increased the choice proportions in the
gambling and perceptual frames converged.

In Figure 3 we have collapsed across the
standard deviation (�) as there was no credible
effect of different levels of standard deviation
(b � 0.07, CI � [�0.04, 0.18]), nor was there
an interaction with the mean of the uncertain
option, the decision frame, or a three-way in-
teraction. This lack of an effect of the variance
is consistent with our past work with this task
(Zeigenfuse et al., 2014), but inconsistent with
what is called the payoff-variability effect in
risky choice (Busemeyer, 1985; Busemeyer &
Townsend, 1993).

The response times (averaging across when
participants chose the uncertain and certain op-
tion) are shown in Figure 3, which, as expected,
exhibited an inverted U-shape, that is, partici-
pants responded faster as the difference in the
mean number of dots between the two options
increased (b � �0.03, CI � [�0.06, �0.01]).

Figure 3. Average choice proportions (A) and response times (B) in the gambling and
perceptual conditions. Posterior predictive fits of the DDM to the data at the group level are
shown as unfilled markers with corresponding credible intervals, reflecting the uncertainty for
a given subject’s behavior. The stars are the posterior predicted means from the RDSS Model
(see the General Discussion). Note that in both tasks there was a tendency to choose the
uncertain option as evidenced by the � � 130 condition. When the uncertain option was
relatively unattractive this tendency to choose the uncertain option was greater in the
gambling condition. See the online article for the color version of this figure.

85MECHANISMS OF DELIBERATION IN PREFERENTIAL CHOICE

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



However, the slowest response times were not
when the uncertain option had the same number
of dots as the certain option (130), but occurred
when the uncertain option had a mean of 115
dots. As we will establish shortly with the
DDM, this is consistent with a “risk seeking”
bias in the drift rates toward the uncertain op-
tion. There were no credible differences in re-
sponse times across the variance conditions
(b � �0.03, CI � [�0.06, 0.01]) and task
frames (b � �0.13, CI � [�0.45, 0.20]).

Drift diffusion analysis. To better charac-
terize the deliberation process, we submitted the
choice and response time data from both deci-
sion frames to a drift diffusion analysis. As
described earlier, the DDM is a mathematical
formulation of a particular sequential sampling
process where participants are assumed to se-
quentially sample noisy information and accu-
mulate it as evidence until a threshold is reached
initiating a response. As a mathematical model,
we can fit it to the observed choices and re-

sponse time distributions to decompose ob-
served choice behavior into four psychologi-
cally meaningful parameters (see Table 1). We
were particularly interested in whether the ob-
served behavioral-level difference between the
perceptual and gambling conditions were iso-
lated to differences in the drift rates, as in our
past results. Such a difference would indicate a
difference in how the information was pro-
cessed between the two tasks. An alternative
possibility is that the difference between the
tasks is due to the start points where it would be
closer to the threshold in the gambling condi-
tion.

The DDM recreates the choice and response
time data reasonably well. The posterior predic-
tive fits at the group level are shown in Figure 3.
The estimated DDM parameters at the group
level are shown in Figure 4. The initial bias, �,
was close to 0.50 in both the gambling and
perceptual conditions and did not differ credibly
from each other, indicating little bias in the

Figure 4. Study 1 posterior means and 95% CI (error bars) for the group-level parameter
estimates of the DDM in each condition. See the online article for the color version of this figure.
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relative start point between the two conditions.
The threshold separation � and nondecision
time 	 were also similar across the two task
frames.

As we would expect, the drift rate � increased
with the average number of dots in the uncertain
option (�). Note that � was positive in both the
gambling and perceptual tasks when the uncer-
tain and certain option were matched in terms of
expected value (i.e., � � 130). This indicates
that in general, participants accumulated more ev-
idence for a fixed period of time in favor of the
uncertain option than evidence in favor of the
certain option. Moreover, when the uncertain op-
tion was particularly unattractive (� � 100), �
was credibly higher in the gambling (M � �0.64,
CI � [�0.79, �0.49]) compared with the percep-
tual condition (M � �0.87, CI � [�1.02,
�0.73]), (contrast of gambling vs. perceptual
M � 0.23, CI � [0.02, 0.44]).

Although the difference between the decision
types was less pronounced compared with the
original Zeigenfuse et al. (2014) study, we note
that in Study 2 we obtained results much closer
to those in Zeigenfuse et al. (2014). Later we
show how these differences in drift rates both
between studies and between conditions are
consistent with differences in the attention allo-
cated to extreme events using a rank-dependent
sequential sampling model (RDSS; Zeigenfuse
et al., 2014). Next, we use a reverse correlation
analysis to characterize the relationship be-
tween the behavioral choices and the individual
samples of information viewed by participants
within a trial. This analysis gives us further
insights into the differences between decision
types.

Reverse correlational analysis. Figure 5
shows the average time series of the deviation
profiles for dU(t) and dC(t), time locked to stim-
ulus onset (A) and response (B) for gambling
and perceptual conditions, which are similar to
those generated by an evidence accumulation
process (see Figure 2). We found that dU(t) is
generally above 0 while dC(t) is below 0, indi-
cating participants were sensitive to the samples
of information across time. Note because there
were fewer observations that contribute to each
profile at later times (due to the optional stop-
ping procedure), the estimates become less re-
liable and show more fluctuations. Nevertheless
they are similar to those generated by an evi-
dence accumulation process (see Figure 2).5

Figure 6A plots the decision kernel across
time for both the gambling and perceptual con-
ditions. Positive values of dDK(t) highlight that
participants were sensitive to the relative num-
ber of dots displayed in the uncertain option
over and above its mean. Averaging across the
kernel shows there was greater sensitivity in the
perceptual (M � 7.75; SD � 2.41; CI � [6.52,
9.02]) compared with the gambling (M � 4.86;
SD � 4.38; CI � [2.51, 7.07]) condition (dif-
ference: M � 2.97; CI � [0.41, 5.57]; Figure
6B).

Figures 6C also shows that the decision bias
dB(t) was on average negative, implying that par-
ticipants needed on average less overall evidence
to choose the uncertain option. However, once
prior uncertainty and variability in the data is
accounted for, the average value of the decision
bias for the gambling condition (M � �0.45;
CI � [�1.40, 0.72]) and the perceptual condition
(M � �0.81; CI � [�1.55, 0.08]) were not cred-
ibly different from 0 or from each other (M �
0.41; CI � [�0.94, 1.70]; Figure 6D).

Relating the reverse correlation results
with behavior and DDM. In seeking to val-
idate the measures of information usage from
the reverse correlation analysis, we also inves-
tigated to what degree they corresponded with
choice behavior and the parameters of the
DDM. For the decision kernel, we correlated the
mean decision kernel for each participant d̄DK
with the proportion of times the option with the
larger expected value was chosen Pr(EVmax).
Recall that the decision kernel was calculated
using the condition where the uncertain and
certain options had the same mean, � � 130,
and the standard deviation was � � 45. Thus, to
avoid circularity in calculating Pr(EVmax), we
excluded the conditions when the uncertain op-
tion had the same mean as the certain option (� �
130). Figure 7A plots this relationship and shows
there was a positive correlation between each in-
dividuals’ decision kernel and the reward-
maximizing choice. However, the strength of this
relationship depended on the decision frame (b �
0.007, CI � [0.0001, 0.013]). That is, the magni-
tude of the correlation between Pr(EVmax) and

5 The Open Science Framework repository for this paper
provides the time series plots for all the offset conditions
time-locked to stimulus onset and response as well as the
average of the cumulative sum of the deviations.
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dDK was stronger in the perceptual than the
gambling condition. This difference between
decision tasks shows that during preferential
decisions participants are less sensitive to indi-
vidual samples of information during delibera-
tion. This conclusion thus converges with the
DDM analyses even though it was based on
actual samples of dots in the stimulus.

The decision kernel d̄DK was also related to
changes in the drift rates as the mean number of
dots � increased. To see this, for each partici-
pant, we calculated the average piecewise linear
slope of the drift rates across levels of �. This
slope indexes how much drift rates in the DDM
changes with each change in �. Figure 7B
shows the positive relationship between the es-
timated slopes and the mean decision kernel for
each participant across conditions (b � 0.04,
CI � [0.02, 0.06]).6

The average decision bias d̄B was also mean-
ingfully related to the DDM parameters. Recall
the drift rate in the � � 130 condition for both
the gambling and perceptual conditions was
positive indicating that the sampled information
was interpreted in favor of the uncertain option,
even when objectively it was not the favorable
option (see Figure 4). At the same time, the
dB(t) measures the difference in the amount of
evidence needed to choose the uncertain versus
certain option with negative values indicating
less evidence is needed to choose the uncertain
option. Thus, we would expect a negative rela-

tionship between the drift rate in the � � 130
condition (�130) and the decision bias from the
reverse correlation analysis (dB(t)). As Figure
7C shows, indeed, the average decision bias d̄B
was negatively correlated with the respective
drift rate in the � � 130 condition (b � �0.04;
CI � [�0.07, �0.01]; though note in this cor-
relation there is a bit of redundancy in that both
draw on the same choice data). Figure 7C also
shows that this relationship did not depend on
the decision type. These results corroborate the
conclusion that in both decision tasks the infor-
mation was on average processed slightly bi-
ased toward the uncertain option, but equally so
in the gambling and perceptual condition.

Interim conclusion. We showed that delib-
eration during preferential choice can be well
described as a sequential sampling process
where individuals accumulate samples of pos-
sible payoffs to form a preference between op-
tions. When preference reaches a threshold this
triggers a choice. To better characterize this
process, we compared deliberation during the
FGT to a perceptual analog of the task, at the
behavioral level, the computational level, and at
the level of the actual information usage. These

6 To test whether d̄DK is related to the noisy process of
evidence accumulation as estimated by the DDM, we esti-
mated a DDM that allowed the variability in the drift
process (drift coefficient) to vary between conditions. The
d̄DK did not correlate with either of these estimates.

Figure 5. Time series of the deviation profiles from the reverse correlation analysis (Equa-
tion 1), time locked to stimulus (A) or time locked to response (B) when � � 130 and � �
45. The top/blue and bottom/red lines represent evidence when choosing the uncertain option
(dU(t)) and when choosing the certain option (dC(t)), respectively. See the online article for the
color version of this figure.
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comparisons showed that a similar sequential
sampling process is used in both decision types.
In fact, the comparisons showed that part of the
risk-seeking behavior we identified in the FGT
is attributable to a perceptual bias in processing
information, as reflected in both the DDM anal-
ysis where there was a positive drift rate for the
� � 130 condition, and the reverse correlation
analysis where the decision bias (dB) was on
average negative (though not credibly so).

There were also differences in the processing
of information between these two decision
types. Most notably, during preferential choice
participants were less sensitive to the samples of
payoff information. This conclusion is sup-
ported by both the DDM analysis showing the
drift rates for unfavorable options were more
positive, and the reverse correlation analysis
showing a smaller decision kernel (dDK). In the
next study, we used these measures of deliber-

ation during preferential choice to investigate
their relationship to other traits and behaviors
like impulsivity and risk taking.

Study 2: Individual Differences in
Deliberation During Preferential Choice

The reverse correlation analysis in Study 1 re-
vealed systematic individual differences in how
participants deliberate and ultimately make a
choice under uncertainty. In the second study, we
investigated whether these individual differences
uncovered in a laboratory task were related to
real-world behaviors and personality traits. One
possible connection seems to be substance abuse,
as past results suggest a link between substance
use and decision making, such as poor learning
(Stout et al., 2004; Yechiam, Busemeyer, Stout, &
Bechara, 2005), as well as differences in reward
processing (Pleskac, 2008; Wallsten, Pleskac, &

Figure 6. (A) Time series of the decision kernel dDK(t[highlight]) ([/highlight]Equation 3)
time-locked to stimulus onset. (B) Distributions of the average decision kernel d̄DK. (C) The
decision bias dB(t) across participants time-locked to stimulus onset (Equation 4). (D)
Distributions of the average decision bias d̄B. See the online article for the color version of this
figure.
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Lejuez, 2005). However, as of yet, very little work
has established a relationship between deficits in
the deliberation process and substance use. There
are indications that substance abuse may be asso-
ciated with differences in the deliberation process.
For instance, Rogers et al. (1999) report that indi-
viduals with drug abuse problems have longer
response times and less extreme choice propor-
tions when choosing between simple monetary
gambles. In terms of an evidence accumulation
process, these differences are consistent with these
individuals showing decrements in the online pro-
cessing of the payoff information (i.e., lower drift
rates � in the DDM). At the same time, substance
use is sometimes understood as a cue-induced
urge (Bonson et al., 2002; Ehrman, Robbins, Chil-
dress, & O’Brien, 1992), which may be explained
by risk-taking-relevant cues leading to differences
in the start point of the deliberation process. The
FGT allows us to further investigate possible as-
sociations between substance use behavior and the
deliberation process.

We also investigated to what degree delibera-
tion in the FGT was related to trait-level measures
of impulsivity. We focused on impulsivity as
some aspects of this trait seem a priori related to
deliberation (Whiteside & Lynam, 2001). For in-
stance, one aspect of impulsivity is premeditation,
which is described as measuring how much peo-
ple deliberate over options. Another aspect is ur-
gency, which is described as measuring a ten-
dency to commit rash or regrettable actions. These
descriptions seem likely to be related to the quality

(indexed by drift rate, �) or quantity (indexed by
threshold separation, �) of accumulated evidence.
For exploratory purposes and to assess convergent
and divergent validity, we also included measures
of risk attitudes in different domains of risk taking
behavior (Weber, Blais, & Betz, 2002) as well as
the BART (Lejuez et al., 2002) to serve as a
measure of risk taking via another laboratory-
based decision task.

Method

Participants. We used flyers and online
advertisements on social media to recruit par-
ticipants between the ages of 21 and 40. To
determine the sample size, we performed a
power analysis in a null hypothesis significance
testing framework of a point-biserial correla-
tion. For an expected effect size of |r | � .3, a
Type I error rate of � � .05, and a desired level
of power at 1 � � � .95, we determined we
needed 134 participants. Because we sought to
increase the likelihood of recruiting a represen-
tative number of individuals at the upper end of
the risk-taking continuum, we included in the
advertisement the phrase “Are you a risk
taker?” (see also Lejuez et al., 2002). We also
sought to recruit beyond the typical student
population by posting flyers in the nearby Lan-
sing, MI, community as well as choosing key-
words related to drug use when posting adver-
tisements on social media. Participants were
paid $10 per hour plus a performance bonus that

Figure 7. (A) The relationship between the average decision kernel and the proportion of
times the higher expected value choice was made for gambling (blue) and perceptual (red)
conditions. (B) The relationship between the average decision kernel and the change in drift
rates across offset conditions (slope�) for gambling (blue) and perceptual (red) conditions. (C)
The relationship between average decision bias and drift rates in the � � 130 condition, �130.
See the online article for the color version of this figure.
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averaged about $3. The study protocol was ap-
proved by the Institutional Review Board at
Michigan State University.

We ended up with a sample of 126 adults.
Eight additional participants were run, but were
over the targeted age range of 40. The sample
consisted of 61 men and 65 women, ranging in
age from 18 to 38 years (M � 24.8, SD � 4.53).
In terms of race and ethnicity, 72.0% described
themselves as White, 14.3% as Black or African
American, 3.2% as Asian or Southeast Asian,
and 4.0% as Hispanic or Latino, 0.8% as Native
American or Alaska Native; the remaining 5.6%
marked “Other” or chose not to respond to the
question.

Self-reported risk taking behaviors. We
asked participants to complete several different
measures of self-reported risky taking behavior.
As a measure of hazardous and harmful alcohol
consumption participants completed the 10 item
Alcohol Use Disorders Identification Test
(AUDIT; Saunders, Aasland, Babor, Delafuente,
& Grant, 1993). In the current sample, the Cron-
bach’s alpha for the AUDIT was � � .77.

As a measure of drug dependency, we asked
participants to complete the Drug Use Disorders
Identification Test (DUDIT; Berman, Bergman,
Palmstierna, & Schlyter, 2005). The reliability
of the DUDIT in the current sample was � �
.90. To assess illegal/legal drug use, participants
reported whether they had ever tried a drug.
Eleven different drug categories were cannabis,
alcohol, cocaine, MDM (ecstasy), stimulants
(e.g., speed), sedatives/hypnotics, opiates, hal-
lucinogens, PCP, inhalants, and nicotine. The
sum of the number of categories tried (poly-
drug) is a validated measure of risky drug use
(Babor et al., 1992; Grant, Contoreggi, & Lon-
don, 2000).

Finally, as a measure of high-risk sexual be-
havior participants completed the Scale of Sex-
ual Risk Taking (Metzler, Noell, & Biglan,
1992). However, the scale was only moderately
reliable (� � .68). In looking back at the scale
presentation, we found that the scale items were
incorrectly presented out of order from the orig-
inal scale and one question was truncated. For
these reasons we chose not to include this scale
in our subsequent analyses.

Impulsivity. To measure impulsivity, we
used the 40-item UPPS Impulsive Behavior
Scale (UPPS; Whiteside & Lynam, 2001). The
UPPS measures impulsivity across four differ-

ent facets (with Cronbach’s alpha measures of
reliability of each subscale in parentheses): pre-
meditation (� � .86), urgency (� � .95), sen-
sation seeking (� � .86) and perseverance (� �
.85). Across the facets, in the current sample,
the Cronbach’s alpha for the UPPS was � �
.94.

We also asked participants to complete 50
selected items from Form II of the Sensation
Seeking Scale (Zuckerman, 1994), which mea-
sures the optimal stimulation level an individual
seeks. In the current sample, the Cronbach’s
alpha of the sensation seeking scale was � �
.86.

Domain specific risk attitudes. Participants
also completed the DOSPERT Scale (Weber et
al., 2002), which contains 40 items that assess
their attitudes (via likelihood judgments) toward
risky behavior in six domains: ethics (� � .74),
investment (� � .85), gambling (� � .80), health/
safety (� � .64), recreational (� � .84), and social
(� � .61). Across the subscales, in the current
sample, the Cronbach’s alpha was � � .86.

Balloon Analogue Risk Task (BART). In
addition to the FGT, participants also completed
the BART, a risk-taking task that has been found
to correlate with a range of risk-taking behaviors
(Lejuez et al., 2002). We used the BART as im-
plemented in Pleskac and Wershbale (2014). Dur-
ing the BART, a computerized balloon is shown
on the screen. Each time participants press the ‘v’
key on a QWERTY keyboard (labeled with a ‘P’
for pump) the balloon can inflate. If the balloon
stays intact, participants earn 10 points. However,
the balloon can also explode, and if it does par-
ticipants lose the points earned on that trial. To
stop and collect the points, participants press the
‘n’ key on the keyboard (labeled with an ‘S’ for
stop). Doing so ends the trial and transfers the
points earned on that trial to a permanent bank.
The average number of pumps taken on nonex-
ploding balloons is the common behavioral mea-
sure of risk taking (Lejuez et al., 2002).

Procedures. Participants first received 15
practice trials of the FGT, before completing a
total of 200 trials (in blocks of 50). The mean of
the uncertain option was set at � � 115, 130, or
145 with a fixed variance of � � 45. We used
these levels of � and � as they proved to pro-
mote the greatest variability between partici-
pants in Study 1. The number of dots in the
certain option was set at c � 130. As in Study
1, participants were told each dot equaled 1
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point. Half of the participants then completed
the UPPS, DUDIT and AUDIT scales (set 1),
the BART, and the DOSPERT, Sensation Seek-
ing, drug use, and Sexual Risk Taking scales
(set 2). The other half of participants completed
the same scales in a counterbalanced order (set
2 first, the BART and then set 1). Finally, at the
end of the session, all the participants com-
pleted another 200 trials of a perceptual version
of the FGT (see Study 1), where participants
were instead told to choose the option with
more dots on average. We included this version
to explore how well the decision type manipu-
lation held up as a within-subject manipulation.
This was a purely exploratory manipulation and
our a priori plan was to use the preferential task
in all of our analysis. In the end, behavior in the
perceptual task closely mimicked behavior in
the FGT, most likely because at this point par-
ticipants ignored the perceptual instructions.
Because our focus is on preferential choice, we
excluded the perceptual task in this study from
any further analysis.

The entire session lasted about 90 min. At the
end of the session, participants received a mon-
etary bonus based on the total number of points
earned in the BART and in the FGT. The typical
bonus was between $1–5.

Results

Initial analyses of the data revealed that we
needed to exclude 2 participants from the anal-
ysis. One participant did not finish the study,
and one participant responded faster than 0.250
s on a majority of the trials during the FGT.
Thus, all analyses are based on a sample of 124
participants.

Behavioral analysis. Figure 8 displays the
choice proportions and RTs at both the average
(solid black circles) and the individuals level
(small gray circles). The unfilled circles and
error bars show the posterior predictive model
fits of the DDM to the data, which we will
return to shortly. As in Study 1, participants
were more likely to choose the uncertain option
when the mean number of dots between the
fixed reward and risky gamble increased (b �
0.39, CI � [0.35, 0.42]). This risky preference
for the uncertain option extended even to the
condition where the uncertain option was dis-
advantageous, which closely tracks our previ-
ous results (Zeigenfuse et al., 2014). Response
times were relatively insensitive to the mean
number of dots in the uncertain option. Trial
level analyses of the response times, in fact,
suggested a very small (unexpected) increasing

Figure 8. Choice proportions (A) and response times (B) in Study 2. The small solid circles
are the average observed values. The gray points depict mean values for each participants. The
unfilled circles are the posterior predicted means from the DDM model and the error bars
reflect the 95% posterior predicted credible interval accounting for the variability between
subjects. The stars show the posterior predicted means from the RDSS Model (see General
Discussion).
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trend of response time (b � 0.06, CI � [0.02,
0.09]) rather than taking an inverted U shape as
in Study 1.

Drift diffusion analysis. We also fit the DDM
to the choice and response times using a hierar-
chical Bayesian estimation framework to model
both group level effects as well as individual-level
data. The group-level parameters are summarized
in Table 2. The fit of the model at the aggregate
level is shown in Figure 8. Consistent with Study
1 and our past results, the risk-seeking behavior
was isolated to the drift rate � (see Table 2). That
is, instead of exhibiting an initial bias to choose
the uncertain alternative, the drift rate on average
was positive, indicating information was pro-
cessed to favor the uncertain option on average. In
fact, even when the uncertain option was unat-
tractive (� � 115), the estimated drift rates were
positive, indicating a tendency to accumulate in-
formation toward the uncertain option.

Reverse correlation analysis. To charac-
terize the online processing of the samples of
reward information, we conducted our reverse
correlation analysis (see Figure 9). The average
decision kernel d̄DK across subjects was (M �
2.39, SD � 4.54) and credibly different from 0
(CI [1.67, 2.62]). Similar to Study 1, the mean
decision kernel d̄DK for each participant was
also correlated with both the percentage of
choosing the option with the higher expected
value (r � .34, CI [.18, .49]; Figure 10A) and
the change in the drift rate across the different
levels of the mean of the uncertain option (r �
.34, CI [.18, .49]; Figure 10B).

The average estimates of decision bias d̄B
reveals that there was no bias in how the sample
information from the uncertain option was pro-
cessed. The average value of M � �0.01 was not
credibly different from 0 (CI � [�0.13, 0.30]),
but unlike Study 1 was not credibly related to the

drift rate in the � � 130 condition (r � �0.01, CI
[�.19,.17]). The decision kernel and decision bias
were not associated with any other parameters of
the DDM (see Appendix A).

We note here that participants in Study 2
were overall more risk seeking than in Study 1
in the FGT. Comparing the choice proportions
in Study 1 (see Figure 3) with Study 2 (see
Figure 8) shows that although choice propor-
tions were similar in the (� � 130) condition, in
Study 2 they tended to still favor the uncertain
option when it was less attractive (� � 115).
Note also the proportion of choices for the un-
certain option when it was more attractive (� �
145) were also lower than in Study 1. Together
this pattern of results implies that participants in
Study 2 were less sensitive to the payoff infor-
mation. The DDM analysis yielded similar re-
sults: the drift rates in the (� � 130) condition
were similar in value, whereas the changes in
the drift rates across the � conditions were
smaller in Study 2. Finally, the reverse correla-
tion analysis also provided converging results
when comparing the decision kernel d̄DK and
bias d̄B measures. The average decision kernel
d̄DK was lower in magnitude in Study 2 com-
pared with Study 1 (Contrast: M � �2.51; CI �
[�4.76, �0.47]), but the decision bias was in
the same range as Study 1 (Contrast: M �
�0.44; CI � [�1.29, 0.74]).

Individual difference analysis. With these
different measures of deliberation in hand, we
examined how they were related to other traits
and behaviors. Appendix A provides a complete
correlation matrix for the FGT behavioral and
reverse correlation measures, DDM parameter
estimates, and individual difference measures.
Here we focus on the correlations that are rel-
evant to the question we set out to test, that is,
to what degree does behavior in FGT correlate
with risky behaviors, and other related mea-
sures, and does FGT account for unique vari-
ance in risky behaviors above and beyond other
measures. At the behavioral level, there was
little empirical support for a relationship be-
tween choice behavior in the FGT and measures
of impulsivity and risk attitudes. None of the
measures of the deliberation process from the
FGT (from the DDM or the reverse correlation
analysis) showed credible relationships with the
individual facets of impulsivity from the UPPS
scale or the risk attitudes from specific domains
of risk taking in the DOSPERT. Thus, we have

Table 2
Estimated DDM Group-Level Parameters From the
Posterior Distributions in Study 2

Parameter Mean 95% Credible interval

Threshold, � 2.51 [2.32, 2.73]
Relative start point, � .46 [.44, .49]
Nondecision time, 	 .11 [.10, .12]
Drift in � � 115, �115 .21 [.13, .29]
Drift in � � 130, �130 .40 [.32, .48]
Drift in � � 145, �145 .56 [.48, .63]
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collapsed across all these subscales forming one
single measure of impulsivity (UPPS) and risk
attitudes (DOSPERT).

The relationship between measures of delib-
eration from FGT to self-reported individual
risk behaviors provided a somewhat different
perspective to the individual differences. The
mean decision kernel d̄DK measuring sensitivity
to the incoming samples of information in the
FGT was negatively correlated with engaging in
more problematic drinking behavior (AUDIT;
Figure 10C; r � �.22, CI [�.39, �.05]), that is,
individuals who drank more tended to be less
sensitive to the displayed samples of payoff
information. Furthermore, the start point param-
eter from the DDM (�) was correlated (r � .23,
CI [.05, .39]) with the number of different types
of drugs (polydrug) participants had tried, that
is, participants who tried more drugs tended to
have a greater initial starting bias to choose the
uncertain option (Figure 10D).7

Trait levels of impulsivity as measured by
UPPS were related to polydrug (r � .29, CI
[.12, .45]) as well as AUDIT (r � .23, CI [.06,
.39]). This raises the question as to what degree
do measures of the deliberation derived from
FGT account for unique variance in the self-
reported measures of risky behavior above and
beyond self assessments of trait impulsivity and
risk attitudes? In fact, in each case they do.
Simultaneously regressing polydrug onto start
point bias � (b � 0.19, CI [0.03, 0.36]) and
UPPS (b � 0.25, CI [0.09, 0.42]) showed that

both were credible predictors of polydrug. The
same is true for the decision kernel (b � �0.18,
CI [�0.35, �0.01]) and UPPS (b � 0.18, CI
[0.02, 0.36]) when predicting the AUDIT score.
These results suggest that FGT-based measures
of deliberation can provide complementary in-
formation to standard measures of trait impul-
sivity and risk attitudes in predicting real-world
risky behaviors.

Rank-dependent Sequential Sampling

Together the DDM and the reverse correla-
tion analysis isolate task and individual differ-
ences to online processing of dynamic informa-
tion. To further synthesize these results and
provide a more mechanistic framework, we turn
to the rank-dependent sequential sampling
(RDSS) model developed by Zeigenfuse et al.
(2014). This model assumes that preference is
formed by accumulating comparisons of the
value of the certain option k to the values sam-
pled from the uncertain option y(t),

P(t) � P(t � �) � �[y(t)] · u[y(t)] � u(k). (5)

7 There was a relationship between estimates of non-
decision time 	 and problematic drug use as measured by
DUDIT (r � .31, CI [.13, .45]). However, this correlation is
likely spurious as it is largely driven by a few participants
with high nondecision times. When we remove seven par-
ticipants with 	 � 0.5 s, the correlation is no longer credible.

Figure 9. Time series of the deviation profiles (Equation 1) time locked to stimulus (A) or
time locked to response (B) when � � 130 and � � 45 for Study 2. The blue and red lines
represent evidence when choosing the uncertain option dU(t) and evidence when choosing the
certain option dC(t), respectively. See the online article for the color version of this figure.
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Compared with the “base” model (Equation
2), Equation 5 adds two components to the
accumulation process: a utility function u(·) and
attentional weights �[·]. The utility function
captures how people evaluate monetary out-
comes based on their subjective value or utility
rather than their objective value. People typi-
cally exhibit decreasing sensitivity to payoffs as
the magnitude of payoffs increases, which is
modeled with a power function u(x) � x� with
0 � � � 1.

The � is the weight allocated to each sampled
outcome from the uncertain option. In the stan-
dard evidence accumulation models each sam-
pled outcome gets the same weight, � � 1. We
allowed differential weights to capture possible
fluctuations of attention. In particular, the

weight allocated to each sampled value is a
function of its likelihood and favorability within
the stream (e.g., the normal distribution). This is
done by making the sample weight a function of
the (de)cumuluative rank from the normal dis-
tribution or the probability of obtaining an out-
come of equal or higher value from the stream,
q � Pr(Y � y). The weight � is approximated
with the following function

�(y) �
	


F(y)
exp��
[�ln(F[y])	]���ln[F(y)]�	�1 (6)

where F(y) is the decumulative rank of the
outcome in the distribution. Equation 6 is actu-
ally the derivative of the Prelec (1998) proba-
bility weighting function, which is often used to

Figure 10. Correlation of behavioral measures, dot metrics, DDM parameters, and individ-
ual differences across participants. (A) The relationship between the average decision kernel
and the proportion of times the higher expected value choice. (B) The relationship between
the average decision kernel and the change in drift rates across offset conditions. (C) The
relationship between the average decision kernel and alcohol consumption as measured by the
AUDIT score. (D) The relationship between the individual relative start point and the number
of drugs tried. See the online article for the color version of this figure.
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capture the nonlinear impact probabilities (and
subjective probabilities) have on choice in de-
cisions under risk and uncertainty (Luce, 2000;
Wakker, 2010 see Appendix B for a formal
derivation). Figure 11 illustrates the properties of
this function for different values of � and �. Panel
A shows that � controls the sensitivity to different
ranges of outcomes. As � goes below 1 the deci-
sion maker becomes more sensitive to extreme
events, and as � goes above 1 the decision maker
become sensitive to moderate events. Panel B
shows that the � parameter controls sensitivity to
either high magnitude outcomes (� � 1; opti-
mism) or low magnitude outcomes (� � 1; pessi-
mism).

We specified the rank-dependent model sim-
ilarly to the DDM so that preference was accu-
mulated over time until reaching a threshold at
which point the appropriate choice was made.
We parameterized the RDSS with a relative
start point (�), a threshold separation parameter
(�), and nondecision time 	 (see Table 1), and
fit this rank-dependent sequential sampling
model at the individual level to the choice and
response times from both Study 1 and Study 2
using Bayesian estimation techniques (see Ap-
pendix A).8 The key difference between the
RDSS model and the DDM is that the drift rate
� is no longer a free parameter independent

from the stimulus. Instead in the RDSS the drift
rate is determined at the trial level by the prop-
erties of the stimulus, and other parameters
characterizing how the participant evaluates and
attends to the sampled outcomes. Note also that
we have parameterized the RDSS so that when
�, �, and �, are all set to 1, the RDSS reduces to
a DDM where the drift rates are the standard-
ized mean difference between the uncertain and
certain option.

Table 3 lists the mean and standard deviation
of the parameters across participants. One thing
to note is that the mean parameters for the
threshold separation �, and relative start point �
correspond closely to the estimates from the
DDM analysis (see Figure 4 and Table 2). The
close correspondence between posterior predic-
tive fits of the model to the choice and response
time data are shown in Figures 3 and 8 (the
asterisks). Note, for instance, that the RDSS is
able to account for the peak in the response
times that occurs not when the uncertain and
certain alternative are equally attractive (� �

8 In principle, the model can be fit using the actual
observed samples. However, model recovery analyses
showed that our study designs were inadequate for accurate
parameter recovery.

Figure 11. Possible rank-dependent sample weighting functions. The rank-dependent model
allows the weight to be determined as a function of its (de)cumulative rank, q � P(Y � y).
The first horizontal axis denotes this decumulative rank q, and the second horizontal axis
identifies the corresponding value y. Thus, for a given stimulus in the FGT the values run from
� � 2� to � – 2�. The weight given to each potential outcome are determined by two
parameters � and �. Panel A illustrates how the parameter � controls the sensitivity to extreme
outcomes for a given value of �, and Panel B illustrates how the parameter � controls
sensitivity to the magnitude of the outcomes for a given value of �. In panel A � � 1 and � �
0.5, 1, or 1.5. In panel B � � 1 and � � 0.5, 1, or 1.5.
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130), but when the uncertain alternative is a bit
less attractive. This can be a difficult property
for diffusion models that set the drift rate as a
function of the mean difference to account for
(Teodorescu et al., 2016). However, the greater
sensitivity to extremely favorable payoffs in the
RDSS gives rise to this peak. In sum, we take
this as converging evidence that the model is
accurately capturing the choice process.

Figure 12 shows the differences in the sample
weights used in the gambling and perceptual
conditions. It shows that in the gambling con-
dition participants placed more weight on the
extreme favorable events. This explains why the
drift rates from the DDM analysis pointed more
strongly toward the uncertain alternative, par-
ticularly when the uncertain alternative was un-
favorable. It also explains why the decision
kernel was lower for the gambling conditions as
participants in the gambling condition down-
weighted most of the incoming information.

In terms of parameter estimates, in Study 1
relative to the perceptual condition the gambling
condition had a lower (though not credibly so)
estimate of �(Mdiff � �0.23, CI � [�0.55, 0.08]),
implying more sensitivity to extreme events. The
gambling condition also showed a lower (though
also not credibly so) �(Mdiff � �0.13, CI �
[�0.29, 0.03]), implying more attention to favor-
able outcomes. These effects become much more
pronounced when comparing Study 2’s estimates
to Study 1’s perceptual condition, with Study 2
having much lower estimates for �(Mdiff �
�0.35, CI � [�0.56, �0.14]), and �(Mdiff �
�0.23, CI � [�0.36, �0.10]).9

In sum, the RDSS further synthesizes the
results from the DDM and reverse correlation
analyses by showing that in the gambling con-
dition participants are both less sensitive (par-
ticularly to intermediate events) and biased to
attend to more extreme positive events. Impor-

tantly, the comparison with the perceptual con-
dition helps rule out that these effects are simply
attributable to perceptual processing of the
stimulus (Kahneman & Tversky, 1984) or how
individuals process numerical information
(Schley & Peters, 2014).

General Discussion

Across two studies we sought to better un-
derstand the deliberation process during prefer-
ential choice. We did this using the FGT in
which participants made decisions between a
certain and an uncertain option. A key feature of
the FGT is that it explicitly provides a stream of
information that individuals can use to form a
preference between the options. In this case, the
information is the possible payoffs (indicated
by the number of dots in the display) that the
uncertain option can generate. Comparing
choices in the FGT with its perceptual analog
showed that while both decision types (prefer-
ential and perceptual) were well described by a
sequential sampling process, there were also
systematic processing differences. The DDM
analysis isolates the differences to the drift
rates, which exhibited a biased accumulation of
evidence in favor of the uncertain option. These
results converge with past studies of a similar

9 Correlating the RDSS parameters with measures of
individual difference in Study 2 showed that the � param-
eter measuring sensitivity to different ranges of outcomes
was correlated (but not credibly so) with the number of
drugs tried (r � 0.17, CI [�0.001, 0.34]), and the correla-
tion between number of drugs tried and initial bias � re-
duced to (r � 0.14, [�0.03, 0.31]). This implies that some
of the risk-seeking tendency captured by the start point in
the DDM may be due to other factors. However, a limitation
of the RDSS is that individual differences in payoff sensi-
tivity � is not accounted for. Nevertheless, these potential
relationships call for future work in terms of individual
differences in deliberation.

Table 3
Mean (SD) of the Parameters From the Rank-Dependent Sequential
Sampling Model

Parameter Gambling Perceptual Gambling, Study 2

Sensitivity to extremes, � .97 (.45) 1.19 (.44) .88 (.31)
Sensitivity to magnitudes, � .78 (.31) .89 (.25) .67 (.33)
Threshold separation, � 2.17 (.46) 2.04 (.38) 2.39 (.90)
Relative start point, � .52 (.08) .53 (.05) .46 (.12)
Nondecision time, 	 .261 (.093) .300 (.089) .190 (.141)
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type (see also Dutilh & Rieskamp, 2016;
Zeigenfuse et al., 2014).

To go beyond the DDM approach for char-
acterization deliberation, we employed a re-
verse correlation technique to examine how dif-
ferent choices are related to the observed
samples of information, and found that people
were less sensitive to the stream of incoming
information during preferential choice than per-
ceptual choice. Besides between-task differ-
ences, we also investigated how individual dif-
ferences in the properties of deliberation during
FGT were related to real world risky behavior
and attitudes. We found that participants’ initial
starting point of evidence accumulation toward
choosing the uncertain option was related to
drug use and their sensitivity to the incoming
information was related to alcohol use.

Finally, we explained these results in terms of
a rank-dependent sequential sampling model
that places different attentional weight on the
sampled outcomes, which are then accumulated
over time to form a preference. The weights are
determined by the likelihood and the favorabil-
ity of the different outcomes, and are analogous
to the probability weights used in rank-
dependent expected utility models (e.g., Luce,

2000; Quiggin, 1982; Tversky & Kahneman,
1992). This model showed that in the FGT
participants placed more weight on high mag-
nitude events as compared with the perceptual
condition. Overall, our extensive behavioral and
modeling analysis gives rise to a richer and
more mechanistic understanding of the deliber-
ation process in preferential choice.

Maximizing Behavior

A question that arises is why preferential choice
patterns vary between Study 1 and Study 2 (and in
part Zeigenfuse et al., 2014)? One possible expla-
nation is that feedback and experience can lead to
greater maximization of expected value (and
hence less biased responding; Erev & Roth, 2014;
see also Cox & Grether, 1996; List, 2003; List,
2004; Shogren et al., 2001). Indeed, once the
practice trials are included, participants in Study 1
completed a higher number of trials (990) than in
Study 2 (215) or in Zeigenfuse et al. (2014) (840).
To examine whether any learning effects im-
pacted differences in performance between task,
we split the trial data in Study 1 into thirds (first
320 trials, next 320 trials, and last 320 trials) and
compared the choice proportions for the uncertain

Figure 12. Estimated sample weight function from the average parameter estimates listed in
Table 3. See the online article for the color version of this figure.
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option. In the first third of trials, when the uncer-
tain option was least attractive (� � 100), partic-
ipants chose the uncertain option in the gambling
(M � 0.27, SD � 0.38) more frequently than in
the perceptual condition (M � 0.15, SD � 0.32),
leading to a mean difference of 0.12 CI � [0.01,
0.24]. This difference between tasks were not
credible in later trials, thus consistent with the idea
that feedback and experience can lead to greater
maximization of expected value. Furthermore, it
suggests an intriguing possibility where the FGT
and its measures of the deliberation can be used in
the future to understand how feedback and expe-
rience can change deliberation.

Value-Based Psychophysics

The FGT broadly fits within a methodology
that Tsetsos et al. (2012) called value-based
psychophysics. This approach seeks to map out
how rewards are processed giving rise to a
preference and ultimately a choice. For this
purpose the comparison with a perceptual ana-
log can be quite informative. In fact, Tsetsos et
al. (2012) also compared perceptual and prefer-
ential decisions, but did not find a difference
between decision types. However, their tasks
differed in several ways from ours including a
slower rate of sampling (every 0.5 s vs. every
0.05 s), presentation of values with symbolic
numbers, and the requirement of a simultaneous
comparison of samples from two uncertain op-
tions. It is not clear which of these methodolog-
ical differences are responsible for the discrep-
ant results, though we note that Dutilh and
Rieskamp (2016) also found a difference be-
tween perceptual and preferential choice when
the values were presented as a single static
sample of numerical counts of dots (much like
the FGT). This implies that it may be easier to
identify a difference with values presented in an
analog fashion than symbolic numbers.

Despite the differences, there are also some
commonalities between our study and Tsetsos
et al. (2012). Importantly, both studies observed
risk-seeking choices when the two alternatives
were matched in terms of expected values. This
result conflicts with the canonical finding that
people are often risk averse for gains (except for
gambles with rare highly desirable payoffs;
Kahneman & Tversky, 1979). One reason for
the difference may be how individuals learn
about the gambles. In our study and in Tsetsos

et al. (2012), they learn about the gambles from
experience, whereas in other research individu-
als learn about the properties of the gambles
from summary descriptions. Such a difference
in presentation format can often lead to system-
atic differences in how people make choices
(Barron & Erev, 2003; Hau, Pleskac, Kiefer, &
Hertwig, 2008; Hertwig, Barron, Weber, &
Erev, 2004; Hertwig & Pleskac, 2010; Weber,
Shafir, & Blais, 2004). For instance, learning
from experience may help highlight possible
outcomes (see also Ludvig, Madan, & Spetch,
2014). Indeed Tsetsos et al. (2012) show that
participants allocate differential weight to sam-
ples based on their local relative rank between
options (see also Tsetsos et al., 2016). Our
RDSS model has a similar feature, though we
determined the rank by the global relative rank
within the option.

The RDSS model makes some intriguing
progress toward a more complete process level
understanding of deliberation. More work is
needed though. For instance, in terms of the
weighting scheme, a more plausible assumption
may be that the weights are based on the rank in
the current sample history. However, our model
recovery analysis showed limited success in
estimating the weights this way. Tasks with
controlled response times and longer sample
streams appear to do better. Even more prom-
ising is to directly manipulate the temporal dis-
tribution of samples to better test how particular
events impact choice (e.g., Teodorescu &
Usher, 2013; Tsetsos et al., 2011). In general, a
value-based psychophysics approach combined
with process-level modeling offers a promising
method to further disentangle the process of
deliberation during preferential choice.

Individual Differences

There has been a recent concern that deci-
sion-making models do not properly account for
heterogenity in preferences (Regenwetter &
Robinson, in press). To address this concern, we
can start to investigate the sources of this vari-
ability (Hertwig & Pleskac, 2018). Thus we
sought to investigate to what degree our mea-
sures of the deliberation process are associated
with individual differences both within the task
and with other aspects of decision making in the
real world. Although our results indicate that
there was little relationship between the delib-
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eration process and self-reports of trait impul-
sivity and risk attitudes, they did reveal a unique
relationship to self-reported substance use.

From a traditional construct-validation per-
spective, the lack of credible relationships be-
tween measures of seemingly similar constructs
might be worrisome (Campbell & Fiske, 1959).
However, from a process-focused perspective,
such results are intriguing, particularly when
both measures independently relate to a relevant
criterion variable, suggesting that they are cap-
turing different aspects of the complex construct
of substance use (Bornstein, 2002). Whereas a
questionnaire such as the UPPS assesses a re-
spondent’s awareness of their own tendencies
toward deliberative or impulsive behaviors, the
FGT assesses the underlying cognitive pro-
cesses that give rise to such behavioral tenden-
cies. Moreover, even within the FGT, not all
measures of substance use were associated with
the same aspects of the deliberation process.
Recall that alcohol abuse was related to de-
creased sensitivity to the online processing of
payoff information whereas drug use was re-
lated to the initial start point during deliberation
between the uncertain and certain option. These
results certainly need to be replicated, but they
may reveal potential computational phenotypes
for these different behaviors that deserve future
investigation (Montague, Dolan, Friston, &
Dayan, 2012). For instance, perhaps the associa-
tion between drug use and the relative start point
reflect a sensitivity to cues, like the labels for the
uncertain and certain option, which may provide
new insights on how substance use could result
from cue-induced urge (Bonson et al., 2002;
Ehrman et al., 1992). An exciting dimension of
the FGT is that the task and the computational
model are amenable to functional neuroimaging
and other neuroscientific investigations thus pro-
viding a possibility to characterize these compu-
tational differences at the neural level.

Conclusion

In summary, we conducted two studies to
characterize information usage during preferen-
tial choice, in situations commonly referred to
as decision making under uncertainty. We
showed that deliberation during preferential
choice can be modeled by a sequential sampling
process, but with important differences from the
sequential sampling process during perceptual

choice. In particular, using a novel reverse-
correlation methodology, we found that individ-
uals are less efficient in processing the samples
of information when making a preferential
choice. At the same time, we also found that not
only were there group and task differences in
this process but also measurable individual dif-
ferences in how people deliberate. These differ-
ences, in turn, were associated with risky sub-
stance use, a relationship that provided
complementary information to standard mea-
sures of trait impulsivity and risk attitudes. Fi-
nally, an extension of the sequential sampling
model using rank-dependent utility has the po-
tential to synthesize the behavioral and model-
ing results while offering a mechanistic account
of the decision machinery. Taken together, we
believe these results demonstrate the critical
role deliberation can play in risk-taking behav-
ior and validate our methodological and com-
putational framework for investigating this pro-
cess.
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Appendix A

Correlation Matrix for Individual Difference Analysis in Study 2

Appendix B

Rank Dependent Sequential Sampling Model

The RDSS captures the hypothesis that each
outcome that is sampled does not have equal
contribution to the accumulation, but is
weighted as a function of the outcome’s likeli-
hood of occurring and overall favorability. This
hypothesis is typically captured using rank de-
pendent utility models and their decision weight
construct (Luce, 2000; Quiggin, 1982; Tversky
& Kahneman, 1992; Wakker, 2010). According
to rank dependent utility models, the subjective
value of the uncertain option is

v � �
i�1

n

�i · yi
� (B1)

where � is the exponential parameter in the
utility function, y1 � . . . � yn are the possible
outcomes of the uncertain option ordered by

desirability, and each �i is the decision weight
assigned to yi.

10 The �i are determined by the
probability of obtaining an outcome at least as
large as y, qi � Pr(Y � yi). These decumulative
probabilities are transformed by a probability
weighting function to capture the nonlinear im-
pact of probabilities on preference. A common
function is the Prelec (1998) function

W(q) � exp��
[�ln(q)]	� (B2)

10 As most research in the behavioral decision theory, we
will work with discrete gambles. Indeed the FGT uses a
discretized normal distribution for stimulus generation. Al-
ternatively one can work with differential calculus to make
the derivations in the continuous domain.

(Appendices continue)

Table A1
Pearson’s Correlation for FGT Behavioral and Reverse Correlation Dot Measures, DDM Parameter
Estimates, and Individual Difference Measures in Study 2

Variable M SD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1. Pr(UA) .64 .20
2. Pr(EVmax) .57 .08 �.27a

3. d̄DK 2.28 4.57 .04 .34a

4. d̄B �.01 2.67 �.13 .00 �.47a

5. � 2.40 .78 .06 .24a �.04 �.03
6. � .46 .12 .50a .05 .09 .01 .00
7. 	 .20 .15 �.13 .30a .06 .12 .23a �.06
8. �130 .56 .35 .58a �.13 �.01 �.06 �.15 .10 �.07
9. slope� .24 .21 �.12 .76a .34a �.05 .07 .07 .21a �.42a

10. BART 35.63 13.01 .20a .19a .15 �.12 .08 .19a .06 .05 .10
11. UPPS 2.22 .41 .13 .05 �.13 .09 .03 .08 .00 .05 .02 �.02
12. SS .57 .17 .08 .08 �.02 �.01 .04 .06 �.13 .00 .13 �.12 �.07
13. DOSPERT 2.68 .48 .02 �.10 .00 .11 .00 .06 .00 �.05 �.07 �.11 �.12 �.07
14. Number of

drugs 3.15 2.02 .16 .09 �.09 �.05 .04 .23a �.02 .15 .03 .08 .29a .01 .05
15. DUDIT .47 .67 �.04 .18a .05 .05 .08 .11 .30a �.10 .15 .17 .00 .09 .21a �.06
16. AUDIT .71 .53 �.04 �.06 �.22a .11 �.07 �.05 �.03 .08 �.03 �.04 .23a .04 .03 .37a .01

a Indicates the 95% credible interval did not contain 0.
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The parameter � controls the curvature of the
weighting function capturing sensitivity to
changes in the ranks, and the � controls the
elevation of the function producing optimistic
or pessimistic weights (Gonzalez & Wu, 1999).
The probability weights �i are determined by
taking successive differences of the transformed
decumulative probabilities,

�i � W(qi) � W(qi�1). (B3)

With �1 � W(q1) – W(0). These decision
weights reflect the marginal contribution of
each possible outcome to the value of the op-
tion. We, however, for the RDSS do not want
the marginal contribution but the individual
contribution of the sampled outcome. To arrive
at those it is useful to multiply Equation B3 by

pi

qi�qi�1
where pi is the probability of outcome yi.

Note pi � qi � qi�1 by definition, thus we are
multiplying the constant 1 to the right side of
Equation B3. Doing the multiplication leads to

�i � pi 

W(qi) � W(qi�1)

qi � qi�1
. (B4)

The ratio on the right-hand side of Equation
B4 is approximately equal to the derivative of
the weighting function when pi is small (see
Equation 6). This factor reflects the sensitivity
of the rank dependent value to each individual
outcome. It is these factors that we use as out-
come weights in the sequential sampling pro-
cess so that,

�i �
W(qi) � W(qi�1).

qi � qi�1
(B5)

Zeigenfuse et al. (2014) showed that when
the sample weights in rank-dependent sequen-
tial sampling process (Equation 5) are set
using Equation B5, as the number of obser-
vations increases the average preference will
approximate the rank dependent utility of the
alternative (Equation B1). The average

change in preference for each sample in the
RDSS will therefore be equal to d �
�i�1

n �i·yi
��k� � v � k�. The variability in the

change in preference is given by �2 �
�i�1

n �i�yi
� � v�2. As a result, to fit the RDSS

we can use the standard DDM formulization
(see Chapter 4 of Busemeyer & Diederich,
2010) setting the drift rate � for each gamble
problem to � � d/�.

According to the RDSS, a choice occurs
when preference reaches a threshold. The un-
certain option is selected when the upper thresh-
old is reached, and the certain option is chosen
when preference reaches the lower threshold.
The drift rate is determined as above by the
mean difference between the uncertain and cer-
tain option, the variance of the gamble, and the
utility and sample weight functions. � has the
same interpretation as the threshold separation
in the DDM. Also similar to the DDM, the start
point of the process is set by �, and a non-
decision time 	 parameter accounts for contri-
butions from processes other than the delibera-
tion.

Bayesian Estimation of RDSS

To estimate the model at the individual
level, we used Bayesian estimation methods.
We used truncated normals for our priors over
the parameters,

	 � TN(1, .3, .01, 1.99)


 � TN(1, .3, .01, 1.99)

� � TN(1, 1, .01, 3)

� � TN(.5, .2, .1, .9)

� � TN(.15, .05, .01, min(RT) � .01).

Where a TN(m, s, l, u) is the truncated normal
with a mean m, standard deviation s, lower
bound l, and upper bound u. The term
min(RT) refers to minimum observed re-
sponse time for the subject. These are vague
priors. We have explored different specifica-
tions of priors and found our estimates to be
robust with reasonable changes in the priors.

(Appendices continue)
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For each participant we estimated the
model using the differential evolution
Markov Chain Monte Carlo (DE-MCMC) al-
gorithm specified in Matlab to estimate the
posterior distributions (Turner, Sederberg,
Brown, & Steyvers, 2013). Our estimation
method used 24 chains with 3250 iterations
for each chain after a burn in of 500 itera-
tions. We excluded observations for which
the response time was less than 250 ms.

Preliminary model recovery analyses
showed that the event sensitivity parameter
�(Equation 6) and the reward sensitivity pa-
rameter � from the utility function (u(x) � x�)

could not be simultaneously estimated. Thus,
we set � � 1. Preliminary analyses with the
model showed that the variability in the un-
certain option was insufficient to account for
the choice probabilities and response times.
Therefore, consistent with Zeigenfuse et al.
(2014), we added an additional level of noise
to each option. Specifically, we added a nor-
mal random variable with a mean of 0 and
standard deviation of 30 to each uncertain
option, � � N�0, 30�.
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