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In many everyday decisions, people quickly integrate noisy samples of information to form
a preference among alternatives that offer uncertain rewards. Here, we investigated this
decision process using the Flash Gambling Task (FGT), in which participants made a series
of choices between a certain payoff and an uncertain alternative that produced a normal
distribution of payoffs. For each choice, participants experienced the distribution of payoffs
via rapid samples updated every 50 ms. We show that people can make these rapid deci-
sions from experience and that the decision process is consistent with a sequential sam-
pling process. Results also reveal a dissociation between these preferential decisions and
equivalent perceptual decisions where participants had to determine which alternatives
contained more dots on average. To account for this dissociation, we developed a sequen-
tial sampling rank-dependent utility model, which showed that participants in the FGT
attended more to larger potential payoffs than participants in the perceptual task despite
being given equivalent information. We discuss the implications of these findings in terms
of computational models of preferential choice and a more complete understanding of
experience-based decision making.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Imagine you are a day trader deciding whether or not to
buy a stock. To make a choice, you watch market data mov-
ing along LED ribbons around trading floors or at the bot-
tom of computer monitors trying to gauge the price
trend. The information flows by in real time so to decide
if the market is trending up or down you have to quickly
integrate the information racing by. How does the day tra-
der make this preferential choice where there is not an
objectively correct answer, but instead where the choice
is based on some subjective value of the alternatives?
One reasonable hypothesis is that the day trader makes a
decision using a sequential sampling process (Busemeyer
& Townsend, 1993; Usher & McClelland, 2004). During this
process, as decision makers deliberate, they sequentially
sample payoff information about the possible alternatives
– either directly from the alternatives or from their mem-
ory of past experience with the alternatives – and integrate
that information over time. Once a threshold of evidence is
reached a decision is made accordingly.

Despite the plausibility of this sequential sampling
hypothesis, we do not know how well decision makers inte-
grate rapid samples of payoff information, which is a criti-
cal assumption of the process. More generally, it is an open
question how well a sequential sampling process describes
choices when decision makers have to rapidly process pay-
off information as in the case of our day trader. Most of the
empirical work to date on risky decision making has fo-
cused on how people choose between monetary lotteries
that are presented as static, symbolic descriptions of the
payoffs and probabilities (i.e., decisions from description)
(Weber, Shafir, & Blais, 2004). Other studies have used the
so-called decisions-from-experience paradigm where
participants explicitly sample from the alternatives and
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Fig. 1. Illustration of the stimuli in the flash gambling task.

182 M.D. Zeigenfuse et al. / Cognition 131 (2014) 181–194
receive feedback over an extended number of trials
(Hertwig & Erev, 2009). However, both of these decisions
are quite different from the choices people make when they
must integrate rapidly arriving payoff information.

Understanding how people accumulate payoff informa-
tion in these situations may also improve our understand-
ing of how people make decisions from description. Some
computational models of these decisions assume a latent
sequential sampling process drives the choice (e.g., Buse-
meyer & Townsend, 1993). In these models, when people
are presented with a choice between a sure thing and a ris-
ky gamble it is assumed that they mentally simulate ran-
dom samples from the gamble. These mentally simulated
samples are then sequentially accumulated to a threshold
that in turn determines the choice and response time.
These models not only give a good account of overall
choice patterns (Busemeyer & Townsend, 1993), but they
also appear to describe the dynamics of deliberation as
attention switches back and forth between attributes and
alternatives (Busemeyer, 1985; Diederich & Busemeyer,
1999; Krajbich, Armel, & Rangel, 2010; Krajbich, Lu,
Camerer, & Rangel, 2012; Milosavljevic, Malmaud, Huth,
Koch, & Rangel, 2010). Again, however, a critical question
remains as to how and how well decision makers can inte-
grate rapid samples of payoff information.

Indeed work in perceptual decision making suggests
that humans and other primates can rapidly integrate
changing perceptual information to make a decision and
that this process is consistent with a sequential sampling
process (Gold & Shadlen, 2007; Palmer, Huk, & Shadlen,
2005; Ratcliff & McKoon, 2008). Thus, not only is the
assumption for rapid integration of payoff information
plausible, but it seems a similar process is used to make
perceptual decisions as has been posited for preferential
decisions. This parallelism has, in fact, led to the intriguing
hypothesis that preferential and perceptual choice may
even use the same or similar cognitive machinery (Buse-
meyer, Jessup, Johnson, & Townsend, 2006; Shadlen, Kiani,
Hanks, & Churchland, 2008; Summerfield & Tsetsos, 2012;
Symmonds & Dolan, 2012).

To examine whether a sequential sampling process
underlies rapid decisions from experience, and to test the
idea that perceptual and preferential decisions are based
on similar cognitive mechanisms,we developed a novel
preferential decision task, which we call the Flash Gam-
bling Task (FGT). The FGT uses dynamic dot stimuli like
those in perceptual decision tasks. In the FGT, participants
make a series of decisions between a certain and an uncer-
tain alternative, with the payoff amount indicated by the
number of dots in the display. Importantly, outcomes from
the uncertain alternative are dynamically updated every
50 ms via draws from an unknown payoff distribution.
We compared the FGT to its perceptual analog, where par-
ticipants were shown the same stimuli and told to identify
which option had the higher average number of dots. This
comparison allowed us to directly test the hypothesis that
people use the same or similar process to make preferen-
tial decisions as they use to make perceptual decisions.
As we will show, we found both similarities and important
differences in the performance on the two tasks. To ac-
count for these results, we develop a computational model
that incorporates sequential sampling and rank dependent
utility theory (Luce, 2000; Quiggin, 1982; Tversky &
Kahneman, 1992).
2. Methods

2.1. Participants

Twenty-three students from Michigan State University
completed the Flash Gambling Task (FGT) and twenty-five
students completed the matched perceptual task. Partici-
pants in both tasks were paid $8.00 for participation,
which took one hour. They were also paid a bonus based
on their choices. In the FGT, this was the reward earned
on four randomly selected trials. In the perceptual task, it
was $0.005 times the number of times their response
was correct. Both tasks were calibrated to have an average
bonus of $2.00.

2.2. Flash Gambling task

Stimuli were generated in MATLAB using MGL (http://
justingardner.net/mgl) and displayed on a LCD monitor.
Two circular displays of white dots were shown on a black
background. Each display had a diameter of 12� of visual
angle. One was located 9� to the left of a green central fix-
ation and the other 9� to the right. The location of the cer-
tain alternative was fixed for a given participant but
counterbalanced across participants.

The certain alternative was filled with randomly placed
dots that remained throughout the duration of a trial. The
uncertain alternative had a dynamic display of dots that
changed every 50 ms (20 Hz). At each update, the number
of dots was drawn from a normal distribution, and then
shown in random locations in the display. We truncated
the normal distribution at �2 standard deviations to en-
sure the uncertain alternative always contained at least
30 dots. Participants were told to choose the option they
would like to receive a draw from. After making a choice,
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participants received the payoff from the next draw, which
was displayed as numerical feedback (Fig. 1).

2.3. Perceptual task

The perceptual task was identical to the FGT except par-
ticipants were told to identify the option that they believed
showed the higher average number of dots. Participants re-
ceived feedback if they were correct or not.

2.4. Design & procedure

Participants in both tasks completed ten blocks of 84
trials. In addition to the between-subjects perceptual ver-
sus gambling manipulation, we manipulated three factors
within subjects: the mean difference in the number of dots
between the certain and uncertain alternative, the stan-
dard deviation in the number of dots in the uncertain alter-
native, and the number of dots in the certain alternative.
Each of these manipulations occurred between trials with-
in a block.

The manipulation of the mean difference in the number
of dots (uncertain offset) allowed us to determine whether
participants could discriminate differences between the
certain and uncertain alternatives. We used three levels
of uncertain offset, with the uncertain option having 30
fewer, an equal number, and 30 more dots than the certain
alternative. We manipulated the standard deviation of the
uncertain alternative to investigate a possible role of pay-
off variance on choice (Busemeyer, 1985). The standard
deviation in the uncertain alternative was either 15 or 50
dots. Finally, we varied the number of dots in the certain
alternative to encourage participants to attend to both
the certain and uncertain alternative and treat them as
separate options. The certain alternative contained either
130 or 250 dots.

During a trial, participants were shown the central fix-
ation first for 200 ms, after which the certain and uncertain
alternatives appeared and remained on screen until re-
sponse. Participants chose the preferred option by pressing
one of two keys on a keyboard. Once a response was made,
the fixation dot was replaced with feedback. Feedback in
the FGT was the value of a random draw from the chosen
alternative. Feedback in the perceptual task was whether
participant’s decision was correct.
3. Results

3.1. Behavioral results

We analyzed data from twenty FGT and twenty-four
perceptual participants. Three FGT participants were ex-
cluded for having over 10% (84 trials) of their response
times less than 100 ms, which is faster than the typical time
it takes to simply press a button. One perceptual participant
was excluded for performing the task incorrectly. In all
behavioral analyses, we report main effects and interac-
tions between all the manipulated variables. Unless speci-
fied otherwise, we used one-sided t-tests and adjusted
the degrees of freedom to maintain a family wise error rate
of a ¼ 0:05 for all post hoc contrasts we investigated for a
given analysis. These contrasts were performed using the
multcomp package in R (Hothorn, Bretz, & Westfall, 2008).

As previously mentioned, the number of dots in the
certain alternative was varied in order to encourage partic-
ipants to treat the certain alternative as a separate gamble.
We did not, however, scale the magnitude of the uncertain
offset or standard deviation. As a result, consistent with
Weber’s law, participants in both tasks were not able to
discriminate differences between the two alternatives in
the 250 dot condition. Consequently, though we report
main effects and interactions involving the number of cer-
tain dots, in figures, post hoc analyses, and subsequent
computational model-based analyses, we will only use tri-
als where the certain alternative contained 130 dots.

3.1.1. Choice
Panels A and B of Fig. 2 show the proportion of trials

participants chose the uncertain alternative as a function
of uncertain offset and standard deviation and task.
Because our choice data was binary, we employed a logis-
tic mixed model to determine the effects of the between-
subjects factor of task (gambling or perceptual) and the
within-subjects factors of uncertain offset, standard devia-
tion, and the number of certain dots.

The logistic model revealed a main effect of uncertain
offset (v2ð2Þ ¼ 64:5; p < 0:001). Specifically, the proportion
of trials participants chose the uncertain alternative
increased as the mean difference went from favoring the
certain to the uncertain alternative, suggesting partici-
pants were able to discriminate which alternative had
more dots. We confirmed this by testing whether the
difference in the log-odds of choosing the uncertain alter-
native between 0 and �30 uncertain offset trials was posi-
tive (z ¼ 14:8; padj < 0:001) and whether the corresponding
difference between þ30 and 0 uncertain offset trials was
positive (z ¼ 12:8; padj < 0:001).

The logistic model also revealed a main effect of task,
with participants choosing the uncertain alternative more
often in the FGT than in the perceptual analog
(v2ð1Þ ¼ 13:4; p < 0:001), as well as an interaction between
task and uncertain offset (v2ð1Þ ¼ 16:4; p < 0:001). Panels
A and B of Fig. 2 show that this interaction arose because
the uncertain alternative choice proportions changed more
in the perceptual task than in the FGT, suggesting
differences in the decision process between the two tasks.
We confirmed that the log-odds difference between 0 and
�30 uncertain offset trials was larger in the perceptual task
than in the FGT (z ¼ 4:08; padj < 0:001), but that the
analogous difference between +30 and 0 trials was not
(z ¼ 1:69; padj ¼ 0:395). The former difference appears to
arise from the uncertain alternative being chosen more
often in the FGT than the perceptual task for �30 uncertain
offset trials, since this log-odds difference was positive
(z ¼ 3:6; padj ¼ 0:001), but the corresponding difference in
the +30 offset condition was not (z ¼ 1:5; padj ¼ 0:475). In
other words, this interaction was due in part to a
disproportionate preference for the uncertain alternative
in the �30 offset condition in the gambling task. Our
computational modeling will examine this disproportion-
ate preference in more depth.
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Fig. 2. (A) and (B) Choice proportion for the uncertain alternative on the 130 certain dot trials. Panel A: standard deviation of 15 dots in the uncertain
alternative, Panel B: standard deviation of 50 dots. Better alternative is defined by the difference in mean number of dots between certain and uncertain
alternative (+30: uncertain > certain, 0: uncertain = certain, �30: uncertain < certain). (C) and (D) Mean response time on 130 certain dot trials. Panel C:
standard deviation of 15 dots in the uncertain alternative, Panel D: standard deviation of 50 dots. Gray bars: FGT data, white bars: perceptual data. Error
bars correspond to one standard error of the mean (SEM).
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We also found a two-way interaction between the task
and the number of certain dots (v2ð1Þ ¼ 26:5; p < 0:001)
and a three-way interaction between task, uncertain offset
and the number of dots (v2ð2Þ ¼ 12:8; p ¼ 0:001), though
these are not shown in Fig. 2. As discussed earlier, these
interactions were the result of participants not being able
to discriminate between the uncertain and certain alterna-
tive in the 250 dots condition.

3.1.2. Response time
Panels C and D of Fig. 2 show the response time data.

We examined differences in RTs using a repeated-mea-
sures ANOVA of ln (RT) on the factors task, uncertain offset,
standard deviation and the number of certain dots. We
used ln (RT) rather than RT to compensate for the skewed
distribution of RTs. Due to the unbalanced design, we used
a multi-level model and report likelihood ratio tests.

The ANOVA reveals a main effect of uncertain offset
(v2ð2Þ ¼ 21:8; p < 0:001). There was also a main effect of
task (v2ð1Þ ¼ 10:3; p ¼ 0:001), with faster RTs in the FGT
than in the perceptual analog. Finally, we found a main ef-
fect of the number of certain dots (v2ð1Þ ¼ 22:4; p < 0:001)
as well as an interaction between task and the number of
certain dots (v2ð2Þ ¼ 11:1; p < 0:001).

3.2. Computational modeling results

To better compare people’s decision processes in the
FGT and perceptual task, we fit a drift diffusion model to
the data from both tasks, which models the decision pro-
cess as a sequential sampling process (e.g., Laming, 1968;
Link & Heath, 1975; Ratcliff, 1978; Stone, 1960). The drift
diffusion model is a mathematical formulation of a sequen-
tial sampling process where participants are assumed to
sequentially sample noisy information and accumulate it
as evidence until a threshold is reached initiating a
response. As a mathematical model we can fit it to the
observed choices and response time distributions to
decompose observed behavior into four psychologically
meaningful parameters: (a) drift rate indexing the average
amount and direction of evidence accumulated; (b) deci-
sion threshold indexing the amount of evidence required
to make a decision; (c) bias indexing the prior bias in favor
of choosing the uncertain or certain alternative; and (d)
non-decision time indexing the amount of time spent on
decision-irrelevant processing.

The model does not use the observed stimulus informa-
tion to drive the evidence accumulation process; rather, it
treats the evidence accumulation process as latent. The
drift rate, in turn, estimates the rate and direction at which
evidence would be accumulated in order to account for the
observed choice data. Thus, we were particularly inter-
ested in whether the difference in choice proportions and
RTs between the FGT and perceptual analog would also
result in differences in drift rate. Such a drift difference
would indicate that the gamble frame changes the evi-
dence that subjects accumulated. Differences between
the two tasks could also arise in the other parameters.
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For instance, one might speculate that the difference in RTs
between the two tasks could be due to a greater level of of
response caution during the perceptual task. If this were
true, then greater response caution should manifest itself
via higher decision thresholds allowing participants to col-
lect more evidence for each decision.

We fit the drift diffusion model at the individual level
using quantile maximum probability method (Heathcote,
Brown, & Mewhort, 2002). This method fits the model to
the quantiles of the observed response time distributions
for uncertain and certain alternative choices (see also
Busemeyer & Diederich, 2010). For each individual, regard-
less of whether they were in the FGT or perceptual condi-
tion, we fit a drift rate for each level of uncertain offset
(collapsing across the different levels of standard devia-
tion). Threshold, bias and non-decision time were set con-
stant across offset and standard deviation conditions. As
shown by Fig. 3, the model does a good job in recreating
the choice proportion and RT data. The average mean-
squared prediction error (MSE) over participants of the
predicted choice proportions and expected RTs supports
the conclusion of a good fit (average choice MSE = 0.028,
average RT MSE = 0.112 s).

3.2.1. Drift rate
Fig. 4A plots average drift rates as a function of task and

uncertain offset. We fit a linear mixed model with one be-
tween-subjects factor for task and one within-subjects fac-
tor for uncertain offset. We found a significant main effect
of uncertain offset (v2ð2Þ ¼ 44:9; p < 0:001), indicating
that changes in the uncertain offset changed the rate of
evidence accumulation. This difference in drift rates ac-
counts for the effect of uncertain offset on choice propor-
tions and RTs.

More importantly for this study is the difference in drift
rate between the FGT and the perceptual analog, mani-
fested as a main effect of task (v2ð1Þ ¼ 8:89; p ¼ 0:002),
with participants accumulating evidence favoring the
uncertain alternative faster in the FGT than in the percep-
tual task (z ¼ 2:77; padj ¼ 0:007). Moreover, we found that
drift rates were positive on �30 offset trials in the FGT
(z ¼ 2:13; padj ¼ 0:041), but were negative in the same
trials in the perceptual task (z ¼ 2:09; padj ¼ 0:045). That
is, when participants viewed the equivalent statistical
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Fig. 3. Drift diffusion model fit and data. (A) Observed choice proportion for th
deviation conditions. The model fit was shown as dots. (B) Observed mean r
predicted mean response time (dots). Gray bars: FGT data, white bars: perceptu
information but framed as payoffs, information processing
changed in a way that led participants to prefer the uncer-
tain alternative even when the objective evidence sup-
ported the certain alternative offering a higher expected
reward. Finally, we also found a significant interaction
between task and uncertain offset in the drift rates
(v2ð2Þ ¼ 6:9; p ¼ 0:031). Since the interaction is scale-
dependent, we refrain from further interpretation (Loftus,
1978; Wagenmaker, Krypotos, Criss, & Iverson, 2012).

3.2.2. Bias, threshold & non-decision time
We also examined whether participants in the FGT and

perceptual task varied in the amount of evidence they re-
quired to make a decision, their response bias toward
either alternative and the amount of time they spent on
non-decisional processing (Fig. 4B–D). We tested each
hypothesis using a two-sided t-test. In all cases, the results
were consistent with chance variation (for threshold,
tð23:4Þ ¼ �0:529; for bias, tð20:9Þ ¼ 1:26; for non-decision
time, tð34:7Þ ¼ 0:852, all ps > 0:2).

These results indicate that the observed differences in
choice and RT across the FGT and perceptual task derive
primarily from differences in the evidence being accumu-
lated, and not from, for example, an overall bias for partic-
ipants to be risk-seeking or for participants to set a larger
threshold in the perceptual task. The differences in drift
rates suggest that on average participants in the FGT col-
lected evidence favoring the uncertain alternative faster
than participants in the perceptual task, which in turn
led to FGT participants responding faster and preferring
the uncertain alternative more often. Moreover, the inter-
action between task and uncertain offset in the drift rate
implies the critical difference between the FGT and the
perceptual task is a difference in the evidence that is accu-
mulated. In the discussion, we argue that this difference in
drift rates between the FGT and its perceptual analog is
due to participants’ valuation process during the FGT. In
particular, participants appear to weigh experienced
events in an optimistic manner.

4. Discussion

In this paper, we investigated how people make rapid
decisions from experience when they are required to
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Fig. 4. Average parameter values of the diffusion model fits. (A) Mean drift rate. (B) Mean bias. (C) Mean threshold. (D) Mean non-decision time. Error bars
are correspond to a single SEM.

186 M.D. Zeigenfuse et al. / Cognition 131 (2014) 181–194
quickly integrate a stream of information to make a choice.
We showed that as rewards from an uncertain alternative
became, on average, more attractive, preference shifted to-
wards the uncertain alternative. Consistent with sequen-
tial sampling accounts of preferential choice (Busemeyer
& Townsend, 1993; Usher & McClelland, 2004), choice
and response times were well described by a drift diffusion
process. This was also true in the perceptual analog of the
task, suggesting these two different decisions use the same
or similar systems (Busemeyer et al., 2006; Shadlen et al.,
2008; Summerfield & Tsetsos, 2012; Symmonds & Dolan,
2012).

However, the study also revealed a dissociation be-
tween the two types of decisions. In particular, preference
for the uncertain alternative was stronger and response
times were faster during the FGT than in the perceptual
analog. Our drift diffusion analyses suggest these results
are not due to a response bias or differences in the location
of the choice threshold, but the result of a difference in the
evidence that is accumulated during deliberation. In other
words, preferential choice under uncertainty appears to
lead to a different representation of statistical information
as compared to when participants made perceptual judg-
ments under uncertainty. Given that participants in both
conditions saw the exact same statistical information, the
next question is what explains this difference in the accu-
mulated evidence.

Behavioral decision theory offers several possible expla-
nations for how the subjective representation of value can
depart from the objective value. In the remainder of this
section, we determine whether three of the most common
of these explanations – a utility function (Bernoulli, 1954),
serial order effects (Hogarth & Einhorn, 1992) and rank
dependent weights from rank-dependent utility theory
(Luce, 2000; Quiggin, 1982; Tversky & Kahneman, 1992)
– could account for our data. To do so, we show how each
concept from behavioral decision theory morphs the evi-
dence that is accumulated in a sequential sampling process
and thus how it affects the drift rate.

4.1. The sequential sampling process model

Before developing the possible explanations, it is nec-
essary to formally define the sequential sampling frame-
work, which our analyses suggest provides a good
description of the basic decision process. In both condi-
tions, if decision makers were accumulating evidence
objectively comparing the value of the certain alternative
c to each of the k values sampled from the uncertain
alternative, labeled ðy1; . . . ; ykÞ, then the accumulated evi-
dence would be

Eobj
k ¼

Xk

j¼1

ðyj � cÞ: ð1Þ

Eq. (1) formally links the information presented to the par-
ticipant to the evidence that is accumulated during the
sequential sampling process, making the latent process
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assumed in our earlier drift–diffusion model analyses
explicit. Previous work (Palmer et al., 2005; Ratcliff &
McKoon, 2008), as well as data from our perceptual task,
suggest this is a reasonable approximation of the
accumulated evidence during our perceptual condition.
Unfortunately, the sequential sampling process in Eq. (1)
cannot describe the decision process in the FGT because
it cannot predict a positive drift rate when the uncertain
offset is negative (see Fig. 4 Panel A). However, given its
ability to account for perceptual data, we will build on
Eq. (1) to incorporate effects from behavioral decision
theory.
4.2. Sequential sampling of subjective expected utility

The first possible explanation we investigate is a utility
function. Utility functions are a standard way of modeling
the representational change between objective monetary
amounts and subjective values. This function formalizes
the idea that decision makers evaluate monetary out-
comes based on their subjective value or utility rather
than their objective value (Bernoulli, 1954; Kahneman &
Tversky, 1979; Savage, 1954; von Neumann & Morgen-
stern, 1947). In sequential sampling models, utility im-
pacts what evidence is accumulated and thus affects the
measured drift rate (Busemeyer & Townsend, 1993). Deci-
sion makers typically exhibit decreasing sensitivity to
payoffs as the magnitude of payoffs increase, which is
modeled with a power function uðxÞ ¼ xh with 0 < h < 1
(Kahneman & Tversky, 1979; Luce, 2000). Substituting
such a function into the evidence accumulation process
(Eq. (1)) results in

Eutil
k ¼

Xk

j¼1

ðyh
j � chÞ: ð2Þ

For utility to account for preferences, there must be a
h > 0 that causes yj � c and yh

j � ch to have different signs.

When this is true, Eobj
k and Eutil

k will also have different
signs, resulting in the preference reversal observed in the
�30 offset condition. There can be no such h, however, be-
cause power functions increase monotonically for h > 0,
meaning that utility cannot account for our data.
4.3. Serial order sequential sampling

The previous section illustrates that utility on its own
cannot reverse the sign of the average difference between
the uncertain and certain alternatives on �30 offset trials.
Another way of accounting for different representations in
the perceptual task and FGT is through serial-order effects,
which discount a particular sample’s contribution to the
accumulated evidence based on when that sample was ob-
served (Hogarth & Einhorn, 1992). These effects have been
observed in experience-based preference tasks similar to
the FGT (e.g., Hertwig, Barron, Weber, & Erev, 2004; Tset-
sos, Chater, & Usher, 2012).

Serial order effects can be formally incorporated into
Eq. (2) by weighting the contribution of each sample j by
an amount ajðkÞ between 0 and 1 whose value depends
on when j was observed. This results in the sequential sam-
pling process

Eorder
k ¼

Xk

j¼1

ajðkÞ � ðyh
j � chÞ: ð3Þ

Clearly, when ajðkÞ ¼ 1, sample j; ðyh
j � chÞ, contributes its

full amount to the accumulated evidence, and when
ajðkÞ ¼ 0, sample j does not contribute at all. When ajðkÞ <
1, sample j contributes near its full amount when ajðkÞ is near
one, and contributes nearly nothing when ajðkÞ is near zero.
For example, a primacy effect can be accounted for by setting
a1ðkÞ ¼ 1 and ajðkÞ ¼ 1=j and a recency effect by setting
akðkÞ ¼ 1 and ajðkÞ ¼ 1=ðk� jþ 1Þ for j < k.

Again the only way to account for choices in the �30
uncertain offset condition is for yj � c and ajðkÞ � ðyh

j � chÞ
to have different signs. Following the previous section to
rule out the utility parameter h, the only way to reverse
the sign is for the serial order weight ajðkÞ to be less than
0, ajðkÞ < 0. However, if this were the case then the serial
order updating model would allow for objective evidence
in support of one alternative (e.g., uncertain alternative)
to be represented as evidence for the other alternative
(e.g., certain alternative). As this is not consonant with
the usual definition of a serial order effect (Hogarth &
Einhorn, 1992), we require ajðkÞ > 0. By an argument anal-
ogous to the one presented for subjective expected utility,
however, this means that incorporating serial order effects
cannot account for choice data in the �30 uncertain offset
condition.

4.4. Rank-dependent sequential sampling

4.4.1. Decision weights
A remaining hypothesis from behavioral decision the-

ory is that people’s attention to observed outcomes is not
uniform, but varies with an outcome’s likelihood of occur-
ring and overall favorability (Tversky & Kahneman, 1992).
This is typically captured using rank dependent utility the-
ory and its decision weight construct (Luce, 2000; Quiggin,
1982; Tversky & Kahneman, 1992). According to rank
dependent utility theory, the subjective value of the uncer-
tain alternative is

v ¼
Xn

i¼1

pixh
i : ð4Þ

In this expression, x1 < � � � < xn are the possible payoffs of
the uncertain alternative ordered by their desirability and
p1 < � � � < pn are decision weights determining each pay-
off’s contribution to the uncertain alternative’s value. The
decision weights pi are a function of what Wakker (2010)
calls ‘‘good-news probabilities’’ – the probabilities qi of
observing a payoff at least as large as xi.

These probabilities are transformed into decision
weights by a probability weighting function W. Following
Prelec (1998), we use the probability weighting function
with parameters c and d,

WðqÞ ¼ exp �dð� lnðqÞÞc
� �

: ð5Þ

As illustrated in Fig. 5, c controls the curvature of the
weighting function, and d controls the elevation of the
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function producing optimistic or pessimistic weights.1 The
decision weights pi are determined by taking successive
differences between the transformed good-news probabili-
ties, so that pn ¼WðqnÞ and pi ¼Wðqiþ1Þ �WðqiÞ for i < n.
In the end, the decision weights reflect the marginal contri-
bution of each possible outcome to the value of the
alternative.2

4.4.2. Sequential sampling weights
A different formulation of the decision weights is

needed in a sequential sampling process because this
process is a running sum of sampled outcomes, not a
weighted average as in Eq. (4). As a result, we need to mod-
el people’s sensitivity to each sample as it is experienced.
This sensitivity to each sample is approximately equal to
the derivative of the probability weighting function,

x�i �
Wðqiþ1Þ �WðqiÞ

qiþ1 � qi
ð6Þ

(for a derivation of the sensitivity parameters x�i see the
Appendix). We show several probability weighting func-
tions and their corresponding derivatives in Fig. 6. They
illustrate how probability weighting functions color ob-
served evidence. When x�i > 1, the decision maker shows
greater sensitivity to the corresponding sample, giving it
more weight than it objectively should be given. When
x�i < 1, the decision maker is less sensitive to the sample.
Finally, when x�i ¼ 1, the decision maker treats the sample
equivalent to its objective weight in the accumulated sum.
Using these sensitivity weights, the evidence accumulation
process is
1 The curvature parameter is often described as controlling the over-
weighting and underweighting of rare events. However, in a rank depen-
dent model the distortion is applied to the probability ranks so that large
and small ranks are overweighted where the function is steepest (Wakker,
2010).

2 The move to rank dependent calculation of decision weights over a
direct transformation of probabilities (e.g., Kahneman & Tversky, 1979)
address what appears to be implausible predictions of violation of
stochastic dominance (Diecidue & Wakker, 2001).
Eweight
k ¼

Xk

j¼1

xjðyh
j � chÞ; ð7Þ

where xj is the x�i associated with sample yj. One interest-
ing aspect of this rank-dependent sequential sampling
model is that due to the weak law of large numbers, as
sample size grows (e.g., due to larger choice thresholds),
predicted choices from the model will converge with pre-
dicted choices from rank-dependent utility theory (see
the Appendix for a formal proof). Thus, the rank-dependent
sequential sampling model we developed here represents a
dynamic and stochastic generalization of rank-dependent
utility theory.
4.4.3. Optimistic sample weights
We assessed the ability of rank-dependent sequential

sampling to account for differences between the FGT and
perceptual tasks via simulation. We used simulation,
rather than fitting the model, because the likelihood has
not yet been derived for the rank-dependent sequential
sampling model. Our simulation consisted of two stages.
In the first stage, we determined the decision threshold A
and perceptual measurement error s, to be defined shortly,
that provided the best fit to participants’ behavior for each
uncertain offset condition (�30, 0, +30) when the uncer-
tain standard was 50 dots. A detailed description of the
simulation-based fitting procedure is contained in the
Appendix.

In the second stage, we simulated the sequential
sampling rank dependent model using the values of A
and s from the perceptual task as estimates for the same
parameters in the gambling task. Respectively, these esti-
mates were 755 dots and 80 dots. This assumption seems
reasonable given the fact that the analyses with the drift
diffusion model did not yield significantly different thresh-
olds for participants in the perceptual and gambling tasks.
Moreover, linking the tasks in this way reduced the
number of free parameters in our simulation while still
allowing us to compare the FGT and perceptual analog.
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Each decision was simulated by sequentially sampling
outcomes from the uncertain alternative, perturbing these
outcomes with normally-distributed noise,3 inserting the
noisy values into Eq. (7) and making a decision when
Eweight

k reached the corresponding threshold. The noise simu-
lated perceptual measurement error, and its standard devia-
tion is the free parameter s estimated in the perceptual task.
For simplicity, we set the utility parameter h in Eq. (7) to
one. To investigate the sequential sampling weights that
best recreate the gambling data we simulated 1000 deci-
sions for each c and d in a grid of values extending from 0
to 2.4 We ran this simulation for the experimental condi-
tions in the FGT that corresponded to the conditions that in-
formed the perceptual model (i.e., the offset conditions of
�30, 0 and +30 dots, when the standard deviation was 50
dots).

Fig. 7 summarizes the results of this simulation. Panel A
shows which values of c and d resulted in choice propor-
tions and RTs satisfying the following three conditions.
3 We also took the floor of the noisy value, so the noisy value still
corresponded to a number of dots.

4 Specifically, we simulated data for every ðc; dÞ such that c ¼ k1=20 and
d ¼ k2=20, where 1 6 k1; k2 6 40. This means that 1=20 6 c; d 6 2.
First, choice proportions in the �30 offset condition must
be above 0.5. Second, choice proportions must monotoni-
cally increase with increasing uncertain offset. Finally, we
calculated the mean-squared deviation between the ob-
served and predicted RTs over all decisions, show only
those values whose deviation was less than 0.5. The shad-
ing in Fig. 7 shows the mean-squared deviation for the
points satisfying these conditions.

Inspection of the plot reveals that c values near 0.7 and
d values near 0.3 do a good job of recreating our data. Panel
B plots probability weights (WðqiÞ) for the values of c and d
shown in Panel A, and Panel C plots the sequential sam-
pling weights (x�i ). These results show that probability
weighting can indeed qualitatively account for our data.
Moreover, with c; d ¼ 1 in the perceptual task, the best fit-
ting values for the FGT suggest that participants weighted
observed outcomes more optimistically than participants
in the perceptual task. In particular, participants in the
FGT tended to emphasize larger gains and deemphasize
smaller gains in determining the value of the uncertain
alternative.

Apparently, simply framing the task as a gamble is suf-
ficient to change how decision makers allocate attentional
weight to sampled outcomes. Non-linear decision weights
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have sometimes been explained in terms of a perceptual-
like distortion (Kahneman & Tversky, 1984). Indeed,
choices in the perceptual condition – specifically the bias
to choose the uncertain alternative when the two alterna-
tives had equal means – is consistent with some over-
weighting of large magnitudes. However, the comparison
between the FGT and its perceptual analog suggest the
rank dependent weights go beyond any simple constant
level of perceptual distortion. Similar findings of decision
makers overweighting extreme payoffs have been reported
in other studies of decisions made from experience
(Ludvig, Madan, & Spetch, 2013; Tsetsos et al., 2012) and
we discuss this finding in the context of those studies.
Before doing so, we discuss the implications of our results
for computational models of preferential choice.

4.5. Implications for computational models of preferential
choice

Besides revealing some of the basic properties of rapid
decisions from experience, our results are also informative
for computational models of decision making (Busemeyer
& Townsend, 1993; Usher & McClelland, 2004). As dis-
cussed before, these models often assume a sequential
sampling process underlies preferential choice. This
sequential sampling assumption implies that to make a
choice, decision makers mentally sample or simulate pos-
sible outcomes from the available alternatives. These out-
comes could be memory traces of past outcomes or, in
the case of gambles, they could be newly sampled out-
comes as one’s attention is drawn to consider different
possible outcomes (Busemeyer, 1982).

One assumption in these models is that the contribu-
tion of the sampled outcome to the accumulated evidence
does not depend on the magnitude of the sampled out-
come. Our results suggest otherwise. The rank-dependent
sample weights imply the contribution of each outcome
to the accumulated evidence at each time point is depen-
dent partly on the relative standing of the sampled out-
come in the larger set of possible outcomes. Having said
that, rank-dependent sample weights does not discount
the role of other factors, such as serial dependency (e.g.,
Tsetsos et al., 2012) and competing interactions with other
alternatives (Roe, Busemeyer, & Townsend, 2001), in shap-
ing preferential choice. In fact, the FGT and similar tasks
(Tsetsos et al., 2012) make the systematic investigation
of these and other factors possible, through their ability
to explicitly control the flow of samples of reward
information.

4.6. Decisions from experience

Our study falls into the general category of experience-
based decisions where people must gather information
from noisy samples of outcomes (e.g., Busemeyer, 1985;
Glaser, Trommershäuser, Mamassian, & Maloney, 2012;
Hertwig et al., 2004; Ungemach, Chater, & Stewart, 2009).
The FGT and our results contribute to our general under-
standing of experience-based decisions in several different
areas. Methodologically, the FGT expands the decisions-
from-experience paradigm in at least three different areas.
First, it expands the paradigm to rapid presentations of
payoff information. Typically the paradigm has focused on
slow trial-by-trial presentation of payoff information (e.g.,
Barron & Erev, 2003; Hertwig et al., 2004). In a notable
extension of the paradigm, Tsetsos et al. (2012) increased
the presentation rate to 2–4 Hz; here we have pushed it
even further to 20 Hz (i.e., a sample every 50 ms). This
means that for the average decision, which participants
took about 1.37 s to make, they were shown about 27 sam-
ples from the uncertain alternative. Compare that with the
slower experience-based decision paradigms where partic-
ipants often base their decisions on 7–10 observations
from a given alternative with each observation being dis-
played for a second or two (Hertwig et al., 2004). Investiga-
tions of how people make these rapid decisions from
experience is important. One reason is that there is a vast
array of preferential decisions made on the basis of rapidly
communicated statistical information of which our day-
trader example in the introduction is just one example.
Our work shows that these decisions are well described
as a sequential sampling process, a process well known
in statistics (Wald & Wolfowitz, 1949) and used to make
other more perceptual (Gold & Shadlen, 2007; Link &
Heath, 1975) and memory-based decisions (Ratcliff, 1978).

A second methodological contribution is the extension
of experience-based decisions to continuous distributions
of payoffs. Most current studies of experience-based deci-
sions focus on binary gambles whose payoffs follow a dis-
crete probability distribution (Fox & Hadar, 2006; Gonzalez
& Dutt, 2011; Hau, Pleskac, Hertwig, 2010; Hau, Pleskac,
Kiefer, & Hertwig, 2008; Hertwig et al., 2004; Hills & Her-
twig, 2010; Ludvig et al., 2013; Rakow, Demes, & Newell,
2008; Rakow & Newell, 2010; Ungemach et al., 2009; for
studies that have used multiple outcome gambles see
Busemeyer (1985), Ert & Erev (2007), Thaler, Tversky,
Kahneman, & Schwartz (1997) and Barron & Erev (2003)).
Discrete binary gambles are a useful simplification, but
they have constrained the questions being asked. For
example, to date most of the work on experience-based
choice has centered around the height of the probability
weighting function at specific probability values (Hertwig
& Erev, 2009). Moving to a continuous distribution forced
us to consider the implications of experiencing a range of
payoffs and the contextual effects of those payoffs on each
sample of experience. Here we found these contextual
effects were well captured with a weighting function
adapted from rank-dependent utility theories (Luce,
2000; Quiggin, 1982; Tversky & Kahneman, 1992; Wakker,
2010) within a sequential sampling framework.

A third methodological contribution is that the percep-
tual analog to the FGT provides a different perspective for
understanding experience-based preferential choice. Re-
cently, many studies have sought to understand decisions
from experience by comparing them with so-called deci-
sions from description, in which respondents learn about
the outcomes and probabilities of gambles through conve-
nient descriptions. The main finding that comes from this
comparison is that in experience-based choices people
choose as if the impact of objectively rare outcomes has
been attenuated in comparison to the weight given to the
same outcomes in decisions from description producing a
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so-called description-experience gap (Hau, Pleskac, Kiefer
et al., 2008).5 This description control, however, has proven
troublesome in trying to understand the description-experi-
ence gap and more generally how people make decisions
from experience. One reason is that the comparison between
decisions from description and decisions from experience
confounds sampling error, which alone can produce under-
weighting of rare events (Fox & Hadar, 2006; Rakow et al.,
2008; Ungemach et al., 2009). That is, during decisions from
experience one factor that impacts the internal representa-
tion of the gambles is the random variability in the sampled
payoffs, which is not present when choices are made from
descriptions of the gambles. Our comparison between pref-
erential and perceptual choice using the FGT and its percep-
tual analog controls for sampling error, since both tasks are
experience-based and use the same information, but framed
differently. Note also that sampling error should also be re-
duced via the larger sample sizes that are taken to make
each decision in the FGT. The perceptual task also controls
for other confounds that the comparison to decisions from
description does not. One of these is the perceptual error
that naturally arises when outcomes/payoffs are conveyed
via experience as compared to description (Shafir, Reich,
Tsur, Erev, & Lotem, 2008). Other confounds include how
respondents search or sample the alternatives for informa-
tion, the memory requirements, and even possibly the deci-
sion process itself (Hertwig & Erev, 2009).

Together these methodological extensions helped re-
veal that while people use similar cognitive machinery to
make rapid experience-based perceptual and preferential
choices, the underlying processes also systematically
differ. Specifically, the valuation process used in these
preferential decisions appears to change the subjective
representation of the statistical information with more
attentional weight being placed on larger and more ex-
treme potential payoffs. This can lead to risk seeking pref-
erences in the gain domain when the risky option has
extreme potential payoffs. Our result echoes similar results
found in other studies with experience-based decision
making (Ludvig et al., 2013; Tsetsos et al., 2012).6 The next
question is why do people overweight these extreme events.
Ludvig et al. (2013) suggests that this effect is similar to per-
ceptual context effects where, for instance, colors appear dif-
ferently depending on the other colors around them (Lotto &
Purves, 2000) or lines looks longer or shorter depending on
their arrowheads (Müller-Lyer, 1889). In the case of gam-
bles, payoffs can seem more or less extreme relative to other
5 In some cases, the weight given to rare outcomes is attenuated relative
to the weight they deserve according to their objective probabilities (see for
example Problems 5 and 6 in Hertwig et al., 2004).

6 This result of greater weight to more extreme payoffs does seem to
contrast with the typical finding of underweighting of rare events often
reported in decisions from experience (Hertwig & Erev, 2009). However, as
described earlier, the underweighting of rare events is often defined
relative to the choices from decisions from description. Our study, as we
have discussed, uses a pereptual control. Even so, it may be the case that
underweighting of rare events is confined to the experience-based para-
digms that use slow trial-by-trial presentation of payoff information. As we
have described in the discussion, there are a number of important
differences like the rapid presentation of larger sample sizes on each trial
that could lead to this difference. This is certainly an avenue for future
research.
possible payoffs. In our case, the rank-dependent nature of
the weights suggests this arises because of the range of pay-
offs people experience during a particular trial with the the
more extreme payoffs grabbing more attention. Our percep-
tual control, however, helps rule out a purely perceptual
explanation to this effect. Instead, as mentioned earlier, it
appears that framing the task as a gamble changes the atten-
tional weight allocated to possible outcomes and the fact
that this salience arises at rapid presentation rates would
seem to speak agains more deliberative processes like learn-
ing (Niv, Edlund, Dayan, & O’Doherty, 2012). Perhaps the
change in attention is the result of a motivational (Lopes,
1987; Weber, 1994) or arousal (Pham, 2007) component
that arises in making preferential decisions. Either way our
results support a growing appreciation of the role that atten-
tion plays in forming a preference during economic deci-
sions (Krajbich, Armel, Rangel et al., 2010; Krajbich &
Rangel, 2011).

5. Conclusion

In conclusion, in this paper we investigated rapid expe-
rience-based decision making using a novel gambling task,
the FGT. This task and its perceptual analog showed that
people use a similar sequential sampling process to make
these two decisions. However, there are critical differences
that lead to a dissociation between preferential and per-
ceptual choice. We show that the valuation process used
during preferential choices changes the representation of
the statistical information that is accumulated. In particu-
lar, the results are consistent with a sequential sampling
process using rank dependent weights where decision
makers optimistically weighted higher payoffs during
deliberation.
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Appendix A. Derivation of sensitivity parameters in
rank-dependent sequential sampling process

A.1. Definition of the sensitivity parameter

The sensitivity weights in the rank-dependent sequen-
tial sampling process were formed in a manner consistent
with rank dependent utility theory (Wakker, 2010, Appen-
dix 6.8). This supplement describes how they were derived
and how the model was estimated. Recall that the value a
decision maker assigns to an uncertain alternative under
rank-dependent utility theory is

v ¼
Xn

i¼1

pixh
i ; ðA:1Þ
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where h is the exponential parameter in the utility function
(see Section 3), x1 < � � � < xn are the possible outcomes of
the uncertain alternative ordered by desirability and each
pi is the decision weight assigned to xi. The pi are deter-
mined by the good-news probabilities qi and the Prelec
(1998) function

WðqÞ ¼ exp �dð� lnðqÞÞc
� �

ðA:2Þ

through the equation

pi ¼Wðqiþ1Þ �WðqiÞ: ðA:3Þ

Note that pi ¼ qiþ1 � qi. Since the Prelec function is
differentiable,7

pi ¼Wðqiþ1Þ �WðqiÞ ¼
Z qiþ1

qi

W 0ð~qÞd~q ðA:5Þ

by the Fundamental Theorem of Calculus (see Wakker,
2010, p. 199, for an in-depth discussion). Multiplying by
pi=ðqiþ1 � qiÞ ¼ 1, gives

pi ¼ pi �
R qiþ1

qi
W 0ð~qÞd~q

qiþ1 � qi
: ðA:6Þ

The ratio on the right-hand side of the product in Eq. (A.6)
is the average slope over the interval ½qi; qiþ1� and is
approximately equal to the derivative of the weighting
function when pi ¼ qi � qiþ1 is small. This factor measures
the sensitivity of the overall rank dependent value to each
outcome. We set the outcome weights in the sequential
sampling process to this sensitivity term,

x�i ¼
R qiþ1

qi
W 0ð~qÞd~q

qiþ1 � qi
: ðA:7Þ
Table B.1
A.2. Agreement with rank-dependent utility

Describing pi in this way allows x0i to be incorporated
into a sequential sampling process as

Eweight
k ¼

Xk

j¼1

xjðyh
j � chÞ; ðA:8Þ

where xj is the x0i associated with outcome yj. Note that
Eq. (A.8) is the same as Eq. (7) except that, Eq. (7) contains
a perceptual error term and Eq. (A.8) does not. In this sec-
tion, we show that when the decision criterion is suffi-
ciently large, decisions made by the sequential sampling
process defined Eq. (A.8) agree with the decisions made
by rank-dependent utility theory.8 This is sufficient to show
that the sequential sampling process defined in Eq. (7) is a
process-model generalization of rank-dependent utility
theory.

As noted earlier, this is a consequence of the Weak Law
of Large Numbers (WLLN; Casella & Berger, 2002). The
7 The derivative of the Prelec (1998) weighting function is

W 0ðqÞ ¼ cd
q

exp �dð� lnðqÞÞc
� �

� lnðqÞ½ �ðc�1Þ
: ðA:4Þ

8 Formally, the limit as the threshold increases, the probability of
disagreement converges to zero.
WLLN formally states that, in a large sample, the propor-
tion of times a outcome xi occurring with probability
pi ¼ qiþ1 � qi will be observed is approximately its proba-
bility qiþ1 � qi. For any sample of size k,

Eweight
k ¼

Xk

j¼1

xjðyh
j � chÞ ¼

Xn

i¼1

mi;kx�i ðxh
i � chÞ; ðA:9Þ

where mi;k is the number of times outcome i is observed
the sample. When k is sufficiently large mi;kx�i � kðqiþ1

�qiÞpi by the WLLN. Substituting kðqiþ1 � qiÞpi into Eq.
(A.9), yields

Eweight
k � k

Xn

i¼1

piðxh
i � chÞ ¼ kv : ðA:10Þ

When the decision threshold is large, a large number of
samples will be observed before a decision is made. Thus,
for large thresholds, the average evidence accumulated
for the uncertain alternative, Eweight

k =k, is approximately
the value v assigned to the uncertain alternative by rank-
dependent utility theory. Thus, the decisions made by the
sequential sampling model and rank dependent utility will
agree.

Appendix B. Fitting the simulation free parameters

To fit the decision threshold A and perceptual measure-
ment error s, we estimated a decision threshold and
perceptual measurement error for each of the three uncer-
tain offset conditions (�30 ,0, +30) when the uncertain
standard deviation was 50 dots using participants’ behav-
ior in the perceptual task. We then averaged these esti-
mates across all uncertain offset conditions to obtain the
estimates used to simulate decisions using rank-depen-
dent weights.

Because the best-fitting decision threshold depends on
the amount of perceptual measurement error, we fit each
condition’s decision threshold and perceptual measure-
ment error in two steps. First, we fit a decision threshold
for each measurement error in the set f1;10; . . . ;100g. This
was necessary because the best-fitting decision threshold
depends on the level of perceptual measurement error.
Then, we visually compared the choice and RT predictions
for each decision threshold/perceptual measurement error
pair, and selected the one that best captured participant’s
behavior in the perceptual task. The resulting error esti-
mates were identical across the three tasks (see Table B.1).

To fit the decision threshold given a level of perceptual
measurement error, we first computed the average num-
ber of samples viewed on a trial, M, which is equal to the
mean RT in seconds divided by the rate at which samples
Best-fitting s and A values as a function of the uncertain offset l.

Uncertain offset (l) Measurement error (ŝc) Threshold (Ac)

�30 80 dots 1030 dots
0 80 227
+30 80 1012
Mean 80 755
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are drawn. We then simulated N ¼ 1000 sequences of M
independent dot differences yi1; . . . ; yiM and measurement
errors �i1; . . . �iM for each condition, and estimated the con-
dition’s threshold as the average total evidence collected in
the average number of samples collected in a trial,

Âc ¼
1
N

XN

i¼1

XM

j¼1

byij þ �ijc
�����

�����: ðB:1Þ

We then estimated the threshold parameter as the average
of the Ac . The values of Ac fit for each condition are shown
in Table B.1.

Examination of Table B.1 shows that the thresholds fit
for the �30 offset conditions are approximately equal to
one another, but not to the threshold fit for the 0 offset
condition. This is a consequence of all three conditions
having the same mean RT despite their difference in mean
perceptual evidence. Because they have the same mean RT
the mean number of observed samples M will also be the
same. As a result, the threshold estimated in the 0 offset
condition must be smaller than the thresholds in the �30
condition since the absolute value of the evidence col-
lected from each sample is smaller in the 0 condition
(i.e., on average the value of the additional evidence will
be 0). To model the data in the gambling trials, we used
a single threshold, by taking the mean of threshold esti-
mates for the three offset conditions for the perceptual tri-
als (i.e., 755 dots). In addition, given the large difference
between the 0 and �30 conditions, we also ran a simula-
tion using different thresholds for each condition to make
sure that our results were not simply an artifact of averag-
ing the thresholds. Though not presented here, we ob-
tained qualitatively similar results from both simulations.
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