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Does attending to an option lead to liking it? Though attention-induced valuation is often hypothesized, evi-
dence for this causal link has remained elusive. We test this hypothesis across 2 studies by manipulating atten-
tion during a preferential decision and its perceptual analog. In a free-viewing task, attention impacted choice
and eye movement pattern in the preferential decision more than the perceptual analog. Similarly, in a con-
trolled-viewing task, attention had a larger effect on choice in the preferential decision than its perceptual ana-
log. Across these experimental manipulations of attention, choice and eye-tracking data provide converging
evidence that attention enhances value, and computational modeling further supports this attention-induced
valuation hypothesis. A possible explanation for our results is a normalization mechanism where attention
induces a gain modulation on an option’s representation at both the sensory and value processing levels.
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LADY CAPULET: Speak briefly, can you like of Paris’s love?

JULIET: I’ll look to like, if looking liking move; but no more deep
will I endart mine eye than your consent gives strength to make it fly.

—Romeo & Juliet, William Shakespeare (2004/1597)

In Romeo and Juliet (Shakespeare, 2004/1597), Lady Capulet
encourages Juliet to gaze at her potential suitor’s face, take delight
in his beauty, and in so doing, hopefully, grow to like him and
accept his love. Juliet, however, is hesitant. Ever cautious, she
agrees to take a chance and look at her suitor, Paris. But in the

same breath, she exercises restraint—perhaps acknowledging that
looking too deeply could render her vulnerable to a torrent of
unchecked emotions. Can looking lead to liking as Lady Capulet
hopes and Juliet worries? Certainly, they are neither the first nor
the last people to consider the possibility that attending to an
option might help garner value for it. Would-be suitors, marketers,
politicians, and many others have acted on this hypothesis.

There are several indicators of a potential link between attention
and value. It would seem to be at the heart of the mere-exposure
effect where repeated exposure to an option appears to enhance
attitudes toward it (Zajonc, 1968, 2001). It also seems consistent
with the gaze-cascade effect where in the final moments before a
preferential decision, people grow more likely to look at the item
they are about to choose (Shimojo et al., 2003; Simion & Shimojo,
2006, 2007). More recently, studies using computational models
of decision making have explicitly proposed a mechanism where
visual attention enhances option valuation, which we refer to as
the attention-induced valuation (AIV) hypothesis. Using eye fixa-
tion as a proxy for attention, these models assume that attention
magnifies the subjective value of the attended-to-option (Krajbich
et al., 2010; Krajbich & Rangel, 2011; Thomas et al., 2019), and
can account for the relationship between fixation and choice such
as the gaze cascade effect and faster response times in higher val-
ued versus lower valued options (Smith & Krajbich, 2019).

To further appreciate the AIV hypothesis, we first need to estab-
lish a more precise definition of attention. Visual attention refers
to the cognitive and neural mechanisms that allow organisms to
select environmental information for prioritized processing (Carra-
sco, 2011; Desimone & Duncan, 1995; Posner, 1980). Such selec-
tion is necessitated by peripheral factors such as the highly
nonuniform acuity across the visual field and central factors such
as limits in working memory and executive control (Curcio et al.,
1990; Marois & Ivanoff, 2005). During natural viewing, the eyes
move three to four times per second to sample information from a
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scene, and the fixation pattern is often used to infer where attention
is allocated (Henderson & Hollingworth, 1998; Kowler, 2011). In
addition to voluntarily selecting information based on task goals,
salient objects and events can involuntarily draw attention
(Theeuwes, 2004; Yantis, 1993). In the context of value-based de-
cision making, several studies have found that salient stimuli were
more likely to be chosen in preferential decisions, which is also
consistent with the AIV hypothesis (Towal et al., 2013; Tsetsos
et al., 2012; Zeigenfuse et al., 2014). Still, other studies have
shown that changes in gaze duration (Armel et al., 2008; Shimojo
et al., 2003), or prompting decisions when people are looking at
certain options (Ghaffari & Fiedler, 2018; H.-Z. Liu et al., 2020;
Pärnamets et al., 2015; Tavares et al., 2017) can all impact choice,
in a manner consistent with the AIV hypothesis.
However, two important limitations with these results stymie

the conclusion that attention induces value. The first is that eye fix-
ation and attention are not the same (see also Mormann & Russo,
2021). Attention is an internal state of the cognitive and neural
system, whereas eye movement is a motor output of the system.
As such, using the motor act of looking to infer the cognitive state
of attention can be problematic. To illustrate, consider the scenario
where people choose by reaching for the item with their hand. We
will certainly recreate a “hand cascade” effect such that people are
more likely to reach for the option they ultimately choose in the
final moments before a decision. Yet, it would be untenable to
maintain that the arm reach is an indication of attention and indu-
ces a preference; instead, most would agree that reaching is a con-
sequence of intention and preference. The same problem occurs
for using looking or gaze to measure attention. Indeed, although
attention and gaze are generally correlated, it is also well known
that they do not always colocalize. For example, people can cer-
tainly attend to a different location than the currently fixated loca-
tion (Carrasco, 2011; Posner, 1980; Von Helmholtz, 1925), and
sometimes people even fail to process visual information that is
present in the currently fixated location (Mack & Rock, 1998;
Simons & Chabris, 1999).
Even if eye fixation can be used as a proxy of attention, a sec-

ond limitation arises: attention also impacts perception and subjec-
tive appearance. Generally, attention increases the perceived
salience of the attended object. For example, attending to an object
makes it appear higher in contrast (Carrasco et al., 2004; T. Liu
et al., 2009), more saturated in color (Fuller & Carrasco, 2006),
moving faster (Turatto et al., 2007), and alters other feature
appearance (Carrasco & Barbot, 2019). Because perception pro-
vides stimulus information to all higher-level cognitive processes
including valuation, an effect on an earlier stage (perception) can
propagate to later stages (valuation). Thus, most of the results sup-
porting the AIV hypothesis can be potentially attributed to an
effect of attention on perception instead of value representation.
For instance, suppose attention can be likened to a filter that filters
out the unattended object (Broadbent, 1958; Everling et al., 2002),
then it would be no surprise if attention also impacts valuation
because it essentially removes the unattended object such that val-
uation can only be based on the attended object. Such a scenario is
still informative for our understanding of value-based decision
making. However, we would argue that under this scenario, atten-
tion does not induce valuation; instead, an apparent effect of atten-
tion on valuation may be due to its impact on the perceptual
system.

Here, we aim to overcome these challenges to better test the
AIV hypothesis. First, we manipulated attention instead of only
measuring gaze behavior. We did so in two ways. In Study 1, we
used a free-viewing paradigm where participants could freely look
at different options and we presented a brief peripheral cue to
attract attention involuntarily. In Study 2, we used a controlled
viewing paradigm where we showed options one at a time and
manipulated the duration in which the options were shown. Sec-
ond, we sought to disentangle any effect of attention on valuation
from its effect on perception by comparing preferential decisions
with a matched perceptual decision baseline. Specifically, we used
the flash gambling task (FGT; Pleskac et al., 2019; Zeigenfuse
et al., 2014) and its perceptual analog, which offers precise control
of the option values. In this task, participants were asked to choose
between two options, each consisting of an array of dots. In one or
both options, the number of dots was determined by a draw from a
normal distribution and was dynamically updated at a rapid rate.
In the preferential frame, participants were told that each dot rep-
resented a fixed reward and they should choose the option with a
higher instantaneous reward; in the perceptual frame, participants
were told to choose the option that has a higher number of dots on
average (see also Dutilh & Rieskamp, 2016). These task settings
were employed to align with the typical conceptual definitions of
perceptual and preferential decisions where a perceptual decision
typically has an objectively correct answer (Hanks & Summer-
field, 2017), but a preferential decision does not have an objec-
tively correct answer (Luce & Raiffa, 1957; Pleskac et al., 2015).
Accordingly, the feedback and payoff for these two conditions
also reflected these framings. In the preferential frame, the feed-
back and payoff were based on a single sample from the chosen
option modeling a risky gamble. In the perceptual frame, the feed-
back and payoff were based on the mean of the underlying distri-
bution, which was objectively defined. This design allowed us to
compare two decision frames with identical stimulus input, thus
providing a means to isolate the effect of attention on preference
over and above its effect on perception.

In addition to these two main strategies, we adopted several
additional strategies to fully characterize attention’s effect on pref-
erence. First, we tracked eye position in a free-viewing task (Study
1), which allowed us to assess how the manipulation of attention
via the peripheral cue affected the subsequent gaze pattern and the
relationship between gaze and choice. Second, we used a con-
trolled viewing task (Study 2) to assess whether eye movement
per se is necessary for an impact on choice. Third, we employed
computational models to help isolate how attention and gaze
impact the decision process during preferential choice. To fore-
shadow our results, we found converging evidence supporting the
AIV hypothesis that attention actively contributes to preferential
decisions by enhancing an option’s value.

Study 1: Cued Free-Viewing Decisions

Our first study examined preferential and perceptual decision
making when participants could freely look at the different options
and choose when they were ready (i.e., optional stopping). Half
the participants were randomly assigned to the FGT and the other
half to its perceptual analog. Across both conditions, we manipu-
lated spatial attention toward one of the options by presenting a
peripheral cue in its location or a central cue as a neutral condition.

2 PLESKAC, YU, GRUNEVSKI, AND LIU

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

994



We note that the cue did not instruct participants to shift their
attention or gaze, as it was noninformative regarding the correct
option, and participants were made aware of this fact. Neverthe-
less, research in visual attention has shown that with suitable spa-
tiotemporal characteristics, such cues attract participants’ attention
and eye gaze involuntarily (Theeuwes et al., 1999; Yantis, 1993).
Thus, this method provided an unobtrusive way to manipulate
attention. Accordingly, the AIV hypothesis predicts that during a
preferential choice, participants would be more likely to choose
the cued option at the expense of maximizing expected value due
to having a higher gaze bias. Conversely, during a perceptual
choice, participants would be less likely to exhibit a gaze bias and
consequently more likely to choose the option with the higher
expected value.

Method

Participants

A total of 61 participants (31 for the preference and 30 for the
perceptual condition) were recruited from the Michigan State Uni-
versity community. They were paid $12 and a $1 to $5 perform-
ance bonus to take part in a single 1.5-hr session of the study.
Michigan State University’s Institutional Review Board approved
the study.

Design

The study used a 2 (decision frame)3 3 (cue)3 5 (mean differ-
ence) mixed design. The frame (preference vs perceptual) varied
between subjects; the attention manipulation (left vs central vs.
right cue) and mean difference (five levels) both varied within sub-
jects across trials. The mean difference (hereafter referred to as
relative value) corresponds to the difference in the mean number
of dots between options (right minus left option: �40, �20, 0, 20,
40), made up from six combinations of option pairs (see the fol-
lowing text).

Flash Stimulus

The stimuli were generated in MATLAB using Psychophysics
Toolbox Version 3 (Brainard, 1997). Participants viewed two cir-
cular display options on an LCD monitor refreshed at 60 Hz (see
Figure 1). Each display contained two circular fields of dynami-
cally updating white dots on a black background with a diameter
of 6.1° visual angle, with one located 6.75° to the left of a red cen-
tral fixation and the other 6.75° to the right.
The dot display changed every 50 ms (20 Hz). At each update, a

new sample of dots was drawn from an underlying distribution
and positioned at randomly generated locations within the circular
field. There were four different display options to manipulate the
number of dots in each sample: Three options were a Gaussian dis-
tribution, truncated at the lower bound of 0, with a mean of 110,
130, or 150 dots and a standard deviation of 40 dots. The fourth
option always had a fixed number of 130 dots, with the locations
of all dots randomly updated every 50 ms.1 These four options
were factorially combined to yield six unique pairs of options,
resulting in five levels of relative value difference (�40, �20, 0,
20, 40 dots) and three levels of unsigned relative value difference
(0, 20, or 40 dots) between options. The option’s location (left/
right) was randomly assigned on each trial.

Procedure

Participants were randomly assigned to either the preference or
perceptual frame. In order to help participants understand the task,
they were told to imagine that the two options were two ponds
with fish swimming in them and the dynamic dots represented the
fish surfacing and submerging. In both tasks, participants were
instructed to observe the two options to form an impression of the
number of fish surfacing. In the preferential frame, they were told
to choose a pond to fish from, such that they would catch the num-
ber of fish that surfaced on the next instant and be rewarded for
the number of fish they caught. In the perceptual frame, they were
told to choose the option that had the higher average number of
fish surfacing in each trial (for full instructions see https://doi.org/
10.17605/OSF.IO/XQ2KT). Participants completed eight blocks
of 90 trials (a total of 720 trials) of the FGT or its perceptual ana-
log. During the task, participants’ right eye positions were
recorded with an EyeLink 1000 (SR Research, Ontario, Canada)
system at 500 Hz.

In each trial, participants started by viewing a fixation dot for
500 ms in the center of the screen (see Figure 1). Then a cue in the
form of a red dot of 0.75° appeared either in the center (neutral
cue: on one third of the trials) or periphery (9° to the left on one
third of trials; 9° to the right on one third of trials) of the screen
for 67 ms (four frames). The location of the cue was randomly
determined on each trial and had the purpose of either keeping par-
ticipants’ attention to the center (neutral cue) or orienting their
attention toward a particular option (peripheral cue). Participants
were informed that the cue did not indicate the correct option and
they should ignore it entirely. After a second fixation in the center
for 50 ms (three frames), the two flash stimuli appeared on the left
and right. The stimuli remained on the screen until participants
indicated their choice by pressing a key (left option: “1” on the
number pad; right option: “2” on the number pad) with their right
hand.

After recording a choice, participants received feedback about
their choice. In the preferential frame, they were told the number
of dots (fish) that would have appeared in the next frame. In the
perceptual frame, they were told the average number of dots in the
chosen option. Both conditions were incentivized. In the preferen-
tial frame, the total number of dots that were sampled (i.e., fish
caught) were accumulated across the trials as a score while in the
perceptual frame the average number of dots from the chosen
option were accumulated as a score. The score was exchanged for
a bonus payout for $1 to $5 at the end of the session, with partici-
pants in the perceptual frame (M = $3.94, SD = 0.07) earning
slightly more than those in the preferential (M = $3.90, SD = 0.09)
frame (MD = 0.04; 95% HDI [0.01, 0.08]).

1We included the SD = 0 (certain) option as an exploratory
manipulation. Our past studies (see Pleskac et al., 2019; Zeigenfuse et al.,
2014) with the FGT had only paired certain and uncertain options, which
could introduce some perceptual asymmetries. Here, the only difference we
found was that participants were more sensitive to relative value
differences when an uncertain option was paired with a certain option than
it was paired with another uncertain option. This sensitivity was a bit
higher in the perceptual condition. There were no credible interactions
between the certainty/uncertainty option and the attentional cue and thus
we collapsed across this exploratory manipulation in all analyses reported
here.
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Data Analysis

Our statistical analyses employed a multilevel modeling approach
using Bayesian estimation techniques (Gelman et al., 2013;
Kruschke, 2014). In each of the analyses, Markov Chain Monte
Carlo (MCMC) methods were used to generate estimates from the
posterior distribution of each parameter. All chains were inspected
for the representativeness of the posterior distribution both visually
and with the Gelman–Rubin statistic. We also inspected the autocor-
relation within chains to confirm their ability to provide stable and
accurate estimates of the distributions. In general, for the reported pa-
rameter values we sought to have an effective sample size of approx-
imately 10,000. In reporting results from the models, we report the
mean of the posterior distribution of the parameter or statistic of in-
terest and the 95% highest density interval (HDI) in brackets.
Preprocessing of Behavioral and Eye-Tracking Data. The

raw eye-tracking data (horizontal and vertical positions over time,
x(t) and y(t)) was segmented by each trial and resampled every 25
ms (40 Hz) to produce two sets of eye movement trajectories: one
was time-locked to stimulus onset and the other to the time of
response. We first classified each sample of eye position into three
zones using the horizontal position (x), because the stimuli were
horizontally displaced. The zones were defined in terms of degrees
from the center of the screen: left (x, �2°), center (�2� # x# 2�),
and right (x . 2°). This three-zone partition was used for the gaze
dwell time regression analysis.2

For the drift-diffusion model analysis, the left and right zone
designations were preserved; however, if a gaze sample was in the
center zone, it was recorded as being equally split between the left

and right zones. Relative gaze dwell time was calculated as the
amount of time the gaze was in each zone divided by the respec-
tive trial response time. Normalized dwell times were derived for
the left and right zones by dividing the relative dwell time for each
zone by the sum of the relative dwell time in the left or right,
thereby excluding the center.

For the gaze cascade regression analysis, we denoted a binary
status variable that tracked whether a participant’s gaze was
focused on the eventually chosen option. As the gaze cascade
refers to the likelihood of fixating on the eventually chosen option
time-locked to the choice, the regression analysis focused on the
final 250 ms of gaze samples, up to the point of the choice.

We removed trials where participants selected an incorrect button
(chose neither left nor right option). Consistent with our previous
work with the FGT (Pleskac et al., 2019), we also removed trials
with responses faster than 0.25 s. Responses faster than this timing
threshold showed no sensitivity to the relative value and thus we
classified them as guessing. The average number of trials that were
removed under both of these cutoffs was 15 (2.12% total; SD =

Figure 1
Trial Schematic for Study 1

FIXATION (500ms)
OR

NEUTRAL CUE (67ms) PERIPHERAL CUE (67ms)

ISI (50ms)

STIMULUS 
(UPDATE EVERY 50ms)

FEEDBACK (1000ms)

TIME

142

Note. Each trial contained a central fixation point (red dot in the center of the screen), a brief cue (red dot), an interstimulus inter-
val (ISI), and two dot stimuli. A central red fixation point was always present on the screen. Participants were free to look at the
stimulus until they chose an option via a key press, in either a preferential or perceptual decision frame. They then received appro-
priate feedback message for each decision frame. See the online article for the color version of this figure.

2 Setting three areas of interest departs from other studies of decision
making that used just two areas centered around each option (e.g., Shimojo
et al., 2003). We took this approach after noting that a significant
proportion of fixations (M = 39.1%, SD = 12.0%, range = 8.72%�75.3%
across participants) did not fall directly on the two stimuli, especially at the
beginning of the trial. Instead, they fell in the center region. Hence, we took
a more conservative approach by using three broad categories: left, right,
and center. On average, participants looked left 34.1% of the time, center
30.2% of the time, right 34.0% of the time, and off the screen 1.7% of the
time.
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44.2) per participant. To minimize the chances that we included tri-
als where participants were distracted, we also removed trials with
response times longer than 5 seconds from all analyses. The aver-
age number of trials that exceeded the 5s cutoff was 13.8 (1.96%
total; SD = 27.3) per participant. For analyses involving gaze data,
trials were removed if more than 50% of the eye-tracking samples
were missing, which excluded an average of 43.0 trials per partici-
pant (6.23% total; SD = 70.75).
Psychometric Function. Choice behavior was modeled with

a hierarchical four-parameter logistic psychometric function (Mac-
millan & Creelman, 2004; Wichmann & Hill, 2001). Accordingly,
the probability of choosing the right option is a function of the rel-
ative value, d:

PrðChoose RightÞ ¼ cþ ð1� c� kÞ 1

1þ exp �ðd�lÞ
h

: (1)

The c and k parameters determine the lower and upper asymp-
tote of the psychometric function and account for the base rate of
choosing right or left options, respectively.3 The asymptote pa-
rameters c and k were free to vary between decision frames but
were fixed across the cue conditions for a given decision frame.
The parameter l is the threshold parameter and determines the
location where the point of subjective equality (the halfway point
between the lower and upper asymptotes of the psychometric
function) is in terms of the relative value d. We used the thresh-
old parameter l to measure the effect of the attentional manipu-
lation on choice behavior. The parameter h is a slope parameter
that determines how the probability of choosing the right option
changes with the relative value. We allowed both parameters to
vary between the decision frame and cue conditions. To estimate
the sensitivity, or the ability to discriminate one option from
another in terms of the relative value, we calculated the slope of
the psychometric function at the threshold (l).
Regression Models. We used a multilevel model to exam-

ine the effect of the experimental manipulations on gaze vari-
ability (standard deviations of trial-level horizontal gaze
position), gaze dwell time (normalized, trial-level gaze propor-
tions to the right—logit transformed), gaze cascade (binary
gaze status of looking at the eventually chosen option for each
sample in a 250-ms interval before choice), and response times
(inversed and standardized). Within-subjects variables were the
relative value (mean dot difference divided by 20 to yield �2,
�1, 0, 1, 2), unsigned relative value (absolute mean dot differ-
ence divided by 20 to yield 0, 1, and 2), and initial cue location
(dummy coded left vs. center vs. right), whereas the between-
subjects variable, was the decision frame (dummy coded percep-
tual vs. preferential). We used a logistic link for gaze cascade
data and a normal link for gaze variability, gaze dwell time, and
response time data. The models were estimated using RStanArm
with the standard priors (Goodrich et al., 2020), which involved
generating 10 chains of 12,000 steps (2,000 steps discarded) esti-
mated from the posterior distribution of each parameter. The pre-
dictor variables were unstandardized in regressions for all
studies, and we report b, the unstandardized coefficient which
quantifies the effect of the experimental conditions on the meas-
ured criterion values.

Results

Choice Behavior

The group-level psychometric functions for each condition are
shown in Figure 2 (for group level parameter estimates, see Table
S1 in the online supplemental materials). For both decision frames,
as the relative value (right–left) increased, participants tended to
choose the right option more often.

Threshold. Furthermore, psychometric functions for different
cue conditions exhibited a systematic lateral shift. Relative to the cen-
ter cue and across relative value differences, the left cue shifted the
function rightward, indicating a greater difference in relative value
was needed for participants to choose the right option when the left
option was cued. Similarly, the right cue shifted the function leftward,
indicating a smaller difference in relative value was needed for partici-
pants to choose the right option when it was cued.We can quantify the
total amount of shift via the psychometric function’s threshold, l.
Doing so revealed a credible shift in threshold for the preferential (M =
11.00.92; 95% HDI [9.68, 12.25]) and perceptual frames (M = 7.98;
95%HDI [6.82, 9.07]).Moreover, consistent with theAIV hypothesis,
the cuing effect in the threshold was credibly larger in the preferential
frame than in the perceptual frame (M = 3.02; 95% HDI [1.29, 4.73]).
In other words, the effect of the attentional manipulation in the prefer-
ential framewas above and beyond its effect on the perceptual frame.

Sensitivity. Figure 2 also shows that the group-level psycho-
metric functions in the perceptual frame had a steeper slope than
that in the preferential frame, suggesting a greater sensitivity to
relative value in the perceptual than the preferential frame. Indeed,
sensitivity in the preferential frame (M = 0.0144; 95% HDI
[0.0119, 0.0170]) was lower than in the perceptual frame (M =
0.0205; 95% HDI [.0167, .0248]). This difference in sensitivity
was credible (M = �0.0061 [�0.0113, �0.0016]). As we show in
the supplementary material, this difference in sensitivity was
largely driven by a few individuals with extremely low sensitivity
(see Section 1.3.1 in the online supplemental materials).

Nevertheless, the potential difference in sensitivity between deci-
sion frames does raise an alternative explanation for the credible
cuing effect: perhaps there was more uncertainty in the preferential
frame (thus lower sensitivity), making participants more susceptible
to the cue. We examined this further by matching the two condi-
tions in terms of sensitivity (the details of this analysis are reported
in Section 1.3.2 in the online supplemental materials). Briefly, we
used the slope of the neutral condition to index the sensitivity of
each participant and designed an algorithm to subsample the partici-
pants to obtain 20 pairs of participants from the two decision frames
with similar or matching sensitivity (and thresholds) in the neutral
condition. Applying the same analysis as above again revealed a
credible shift in the threshold for the preferential (M = 10.21; 95%
HDI [8.88, 11.52]) and perceptual frames (M = 8.17; 95% HDI
[6.8, 9.37]). Moreover, consistent with the AIV hypothesis, the
cuing effect in the threshold was credibly larger in the preferential
frame than in the perceptual frame (M = 2.05; 95% HDI [0.26,
3.84]). Crucially, because the conditions were matched in terms of
sensitivity, there was no credible difference in sensitivity between

3 The two asymptote parameters were necessary to account for
differences at the individual participant level and to facilitate comparisons
in threshold and sensitivity.
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decision frames (M = �0.0026; 95% HDI [�0.0078, 0.0026]). To-
gether this result speaks against the idea that the cuing effect was
due to differences in uncertainty between the conditions and instead
helps further support the AIV hypothesis.

Response Times

Group-level response times (RTs) for each condition are shown in
Figure 3. To assess the effect of our experimental manipulations on
RT, we regressed the standardized, inverse response times against
the relative value, decision frame (perceptual vs. preferential), cue

location (left, center, right), and choice (left vs. right), including a
term for squared relative value to account for the inverted U-shape of
Figure 3. Response times decreased as the relative value for an
option increased (positive quadratic relative value term because of
inverse Gaussian RTs; b = 18; 95% HDI [16.27, 19.72]), indicating
better discrimination between options as the relative values became
more extreme. RTs were also on average faster in the preferential
(M = 1.43 s; 95% HDI [1.21, 1.65]) than perceptual frame (M = 1.61
s; 95%HDI [1.39, 1.84]; b = 0.37 [0.02, 0.73]). Again, like the differ-
ence in sensitivity, when we examined the individual-level response

Figure 3
The Posterior Predicted Response Times Are Plotted Against the Relative Value

Note. The dots represent the posterior means of the response times, and the error bars are
the 95% credible intervals of the group-level posterior distributions. The data were condi-
tioned by the decision frame, eventual choice (panels), and cue location (color and shape).
Note for the top row (left choice), negative relative values indicate correct responses for the
perceptual frame and expected value maximizing response for the preferential frame. The
positive relative values indicate incorrect responses for the perceptual frame and not
expected value maximizing responses for the preferential frame. For the bottom row (right
choice), this is reversed. See the online article for the color version of this figure.

Figure 2
The Probability of Choosing the Right Option Is Plotted Against
the Relative Value (Difference in Mean Dots Between Options,
Right–Left)

Note. The data were conditioned by the decision frame (panels) and cue
location (color). The dark lines represent the posterior predicted choice
proportions with the error regions indicating their 95% HDIs of the group-
level posterior distributions. See the online article for the color version of
this figure.
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times, we found that a few individuals largely drove this difference in
response time in the preference frame—by and large, the same indi-
viduals with extremely low sensitivity—responded very quickly (see
Section 1.3.1 in the online supplemental materials).
Just as with the difference in sensitivity, the difference in

response times could suggest some differences in information
processing that might explain the greater effect of cue in the pref-
erential frame on the thresholds. Thus, we extended our matching
analysis to match the perceptual and preferential groups in terms
of sensitivity, threshold, and mean response times in the neutral
condition. We again obtained essentially the same results in these
subsampled participants—a larger cuing effect in the preferential
than the perceptual condition (for details see Section 1.3.2 in the
online supplemental materials).
In addition to these effects of relative value and decision frame,

the cue credibly affected response times. But this effect depended
on whether participants chose left or right (see Figure 3). The fast-
est responses occurred when cue and choice were congruent: when
the left option was cued, the left choice was faster (M = 1.46 s;
95% HDI [1.31, 1.62]) compared to when the right option was
cued (M = 1.62; 95% HDI [1.46, 1.78]. Similarly, when the right
option was cued the right choice was faster (M = 1.44 s; 95% HDI
[1.28, 1.60]) compared to when the left option was cued (M =
1.55 s; 95% HDI [1.39, 1.71]). Consistent with the observed
choices, this congruence effect in RTs cues was larger in the pref-
erential versus perceptual frame as revealed by a three-way inter-
action among frame, cue, and choice (b = 0.13; 95% HDI [0.03,
0.22]). See full parameter estimates in Table S2 in the online sup-
plemental materials.

Information Search

The choice and RT analyses suggest that relative value and cue
had a differential impact on preferential vs. perceptual choice
behavior. We reasoned that such difference could be accounted for
by different information search patterns, given the free-viewing
nature of the task. Thus, we used eye fixation as a proxy for infor-
mation search as participants sampled information from the two
options. Average horizontal gaze trajectories are plotted time-
locked to stimulus onset in Figure 4. The gaze trajectories exhib-
ited several features of information search in our tasks. First, there
was a prominent cuing effect such that on average, gaze first devi-
ated toward the left location after a left cue and toward the right
location after a right cue. In other words, participants tended to
look at the cued option first in their information search, and this
was true in both decision frames. This observation suggests that
the peripheral cue—although entirely task-irrelevant and brief—
attracted the initial fixation. Second, after the initial deviation, the
gaze trajectories reversed their direction, suggesting that partici-
pants tended to inspect the other option after first inspecting the
cued option. Third, the degree of the shift between the left and right
option, or the amplitude of the oscillatory time course of gaze tra-
jectory, appeared to be larger in the perceptual than the preferential
frame. Fourth, there was also a leftward bias such that the leftward
deviation was larger overall than the rightward deviation. This can
also be seen in the center cue condition, which showed that the first
deviation on average is toward the left option, even though the cue
was in the center. Such leftward bias in initial fixation has been
reported in previous free-viewing tasks (Foulsham et al., 2013;

Foulsham & Kingstone, 2010). Indeed, there is a well-documented,
small but consistent leftward bias in many visuospatial tasks (Jewell
& McCourt, 2000), which might result from reading habits and/or
brain lateralization of attentional control (Mesulam, 1981; Rinaldi
et al., 2014; Thut et al., 2006). This overall bias is orthogonal to our
main experimental manipulations and as such, we will not consider
it further in this report. In the following, we quantify three measures
from the gaze trajectory data: gaze variability, relative dwell time,
and gaze cascade, to examine how our experimental manipulations
impacted information search.

Gaze Variability. The first measure of information search
behavior is the degree to which gaze alternated between the two
options. We calculated each trial’s standard deviation in the horizon-
tal eye position as a proxy for the magnitude of gaze alternation. A
larger left–right shift pattern should give rise to a larger standard
deviation in gaze position, potentially indicating a more balanced in-
formation search between left and right options. For example, if par-
ticipants spend all their time at one location, the standard deviation is
zero, whereas if they divide time equally, the standard deviation is
maximal. Figure 5 shows that gaze variability decreased as the
unsigned relative value increased (b = �0.21; 95% HDI [�0.27,
�0.16]). This effect of the unsigned relative value depended on the
decision frame (b = 0.08; 95% HDI [0.002, 0.17]), with gaze vari-
ability in the perceptual frame (b = �0.19; 95% HDI [�0.22,
�0.15]) being more sensitive to unsigned relative value than that in
the preferential frame (b = �0.11; 95% HDI [�0.14, �0.07]). Gaze
variability was also reduced when cuing to the right vs. left (b =
�0.16; 95%HDI [�0.26,�0.07]), with this difference between cues
being reduced with larger unsigned relative values (b = 0.10; 95%
HDI [0.02, 0.18]). This latter effect likely reflects the overall leftward
bias in gaze and will not be discussed further. Altogether the changes
in gaze variability suggest that search was less variable (and less bal-
anced) in the preferential frame and this difference between decision
frames was more pronounced when the options weremore similar.

Relative Dwell Time. For the second measure, we quantified
the cue’s overall impact on gaze by calculating the relative dwell

Figure 4
Average Horizontal Gaze Trajectories Time-Locked to Stimulus
Onset

Note. Negative values indicate the left side of the screen, and positive
values indicate the right side of the screen. The trajectories are separated
by decision frame (panels), cue location (colors), and collapsed across
other trial attributes (i.e., relative value and participants’ choice). The
error regions indicate standard errors of the average horizontal positions
at that time point across participants. See the online article for the color
version of this figure.

DOES ATTENTION INDUCE VALUE 7

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

999

https://doi.org/10.1037/xge0001307.supp
https://doi.org/10.1037/xge0001307.supp
https://doi.org/10.1037/xge0001307.supp


time within a trial—the time participants spent looking at one
option normalized by the total amount of time they spent looking
at both options. Figure 6 plots the relative dwell time as a function
of the unsigned relative value for the different cue types and deci-
sion frame. This analysis revealed that cuing the right option credibly
increased the gaze dwell time on the right option (b = 0.48; 95% HDI
[0.17, 0.79]). Moreover, there was a credible interaction between the
decision frame and the cue (b = 0.76; 95% HDI [0.31, 1.21]) such
that the effect of the cue was larger in the preferential frame (b = 1.07
[.91, 1.23]) as compared to the perceptual frame (b = 0.60; 95% HDI
[0.45, 0.75]). There was no credible effect of the unsigned relative
value on dwell time. These results suggest that the cue, on average,
attracted the first fixation to the cued option and led the eye to fixate
on the cued option for longer. These cuing effects are more pro-
nounced for the preferential frame than the perceptual frame.
Gaze Cascade. As a final step in our analysis of information

search, we examined the gaze cascade effect (Shimojo et al., 2003;
Simion & Shimojo, 2006, 2007). According to the gaze cascade
effect, participants grow more likely to fixate on the item they are
about to choose. Figure 7 plots the probability of fixating on the
eventually chosen option at different time points before the choice.
As the plot shows, the likelihood of fixating on the chosen option
increased until the choice was recorded. Figure 7 also suggests
that this gaze cascade effect depended on the decision frame and
attentional cue. A hierarchical logistic regression on whether the
chosen option was fixated on (in the time window from 0 to �250
ms) with decision frame, cue location, and unsigned relative value
as predictors supported this inference. In the preferential frame,
participants were more likely to fixate on the chosen option than
those in the perceptual frame (b = 0.44 [0.08, 0.80]). There were
also some credible effects of cue and unsigned relative value, but
these are inconsistent thus we do not interpret them further (see
Table S6 and Figure S6 in the online supplemental materials).

Summary

We found that the preferential decision was impacted more by
the exogenous attentional cue than the perceptual decision.

Specifically, a greater value difference between the right and left
option was needed for participants to choose the right option when
the left option was cued (and vice versa when the right option was
cued), and this difference was greater in the preferential frame
than the perceptual frame. The attentional cue’s differential effect
also manifested during information search. The relative dwell time
on a particular option was influenced to a greater extent by the cue
in the preferential frame than the perceptual frame. We suggest the
attentional cue’s effect on preferential choice over and above its
effect on perceptual choice is consistent with the AIV hypothesis,
whereby attention to an option enhances its value and makes it
more likely to be chosen.

Further support for the AIV hypothesis also comes from informa-
tion search behavior late in the trial. In this case, a gaze cascade
effect was observed where participants grew more likely to look at
the item they were about to choose, and this effect was stronger in
the preferential frame. Why does this differential gaze cascade
effect support the AIV hypothesis? As Mullett and Stewart (2016)

Figure 6
The Posterior Predicted Means of Relative Dwell Time for the
Right Option Are Plotted Against the Unsigned Relative Value
(Absolute Difference in Mean Dots Between Options), Conditioned
by the Decision Frame (Panels) and Cue Location (Colors)

Note. Error bars indicate 95% HDIs of the posterior predicted means.
See the online article for the color version of this figure.

Figure 5
The Posterior Predicted Means of Gaze Position Standard
Deviation Are Plotted Against the Unsigned Relative Value
(Absolute Difference in Mean Dots Between Options)

Note. The plots are conditioned by the task frame (panels) and cue loca-
tion (colors). Error bars indicate 95% HDIs of the posterior predicted
means. See the online article for the color version of this figure.

Figure 7
The Probability of Fixating on the Eventually Chosen Option Is
Time-Locked to Choice Response up to 500 ms Before the Choice

Note. The data was conditioned by the decision frame (panels) and cue
location (color). Error regions indicate standard errors of the probabilities.
Curves were smoothed using a seven-point rolling average. See the online
article for the color version of this figure.
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have shown, a gaze cascade effect can emerge from an evidence
accumulation decision process, where to make a decision, partici-
pants accumulate evidence for either option up to a threshold and
then respond accordingly. But, to create a gaze cascade effect, the
evidence accumulation process needs the following two properties:
a relative stopping rule where the decision to stop is based on the
relative evidence for one option over the other(s) and the evidence
being accumulated is weighted more heavily in favor of the cur-
rently attended item. Thus, the larger gaze cascade effect in the
preferential choice than the perceptual analog is consistent with an
evidence accumulation process underlying both decisions. The AIV
hypothesis implies a boost in the value of the attended option and
hence the accumulated evidence for the option. Later, we use com-
putational modeling to quantitatively assess how well an evidence
accumulation process can explain our data, and if a greater weight
is given to the attended option, particularly during preferential
choice. Independent of the modeling results, however, the eye
movement data support the AIV hypothesis with the attentional cue
having a greater impact on search early in the time course of the de-
cision and a larger gaze cascade effect later in the time course. Fur-
thermore, across the time course, we see the consequences of these
effects in the reduced variability in information search.
The potential difference in sensitivity and response times

between the preferential and perceptual frames do identify some
potential limitations for Study 1 and suggests an alternative expla-
nation for at least the observed larger cuing effect in the preferen-
tial frame. For instance, lower sensitivity to the relative value
could indicate more uncertainty such that any additional piece of
information could have a greater effect on choice. Thus, the
greater impact of the attentional cue could be due to the greater
uncertainty in the preferential frame. The response time differen-
ces raise a similar alternative explanation. Follow-up analyses,
however, revealed that these condition-level differences were
largely driven by a few participants in the preferential frame who
exhibited less sensitivity and had faster responses (see Section
1.3.1 in the online supplemental materials). Furthermore, post hoc
matching analyses that equated sensitivity and response time
across decision frames replicated the cuing effect, implying poten-
tial differences in levels of information processing cannot explain
this cuing effect (see Section 1.3.2 in the online supplemental
materials).
Before describing our computational modeling results in which

we further explore the linkage between attention and valuation, we
conducted an additional study to provide converging evidence for
the AIV hypothesis. In Study 2, we exerted more control on partici-
pants’ information search pattern, thus controlling for the differen-
ces in sensitivity and response times between the decision frames.
In addition, there were also differences in eye movements between
the decision frames in Study 1. Past work has suggested that the
apparent effect of attention on value is due to the sensorimotor as-
pect of eye movement and the mind aligning preferences in con-
cordance with the motor movement (e.g., Shimojo et al., 2003;
Simion & Shimojo, 2007; cf. Nittono & Wada, 2009 and Bird
et al., 2012). In Study 2, we addressed these issues using a fixed
viewing study, eliminating differences in eye movement behavior
between task frames. We also employed an interrogation protocol
where we cued participants when to make a choice. Our goal was

to equate motor movements, sensitivity and response times between
task frames and thus conduct a more complete assessment of the
AIV hypothesis a priori, while controlling for potential differences
in information processing between the decision frames.

Study 2: Fixed-Viewing Study

In this study, we changed the display so that the two options were
presented one at a time in the center of the screen. We manipulated
the duration of each presented option, thus controlling the time par-
ticipants attended to each option without the need to move their eyes.
Such a fixed viewing paradigm eliminated any difference in response
times and eye movement patterns between decision frames. Although
changing presentation duration is not a typical attention manipulation
in laboratory studies, people tend to look at objects that interest them
for a longer period in naturalistic viewing conditions (Henderson,
2003). Thus, we can use presentation duration as a proxy for atten-
tion. Importantly, the same duration manipulation was applied to the
perceptual and preferential decision frames, allowing us to isolate the
effect of our manipulation on valuation beyond its effect on percep-
tion. With this change in the method of manipulating attention, this
study provided an opportunity to examine the generalizability of the
observed differential attentional effects between the two decision
frames. Furthermore, the study allowed us to assess whether the
effect of attention on preference required eye movement per se, as
suggested by past work (Shimojo et al., 2003; Simion & Shimojo,
2007). We did not preregister this study.

Method

Participants

In total, 63 (31 preferential and 32 perceptual) undergraduate
participants from the Michigan State University Psychology sub-
ject pool took part in the study. In addition to receiving course
credit for participating, they also earned a $1 to $5 bonus based on
their task performance. Michigan State University’s Institutional
Review Board approved the study.

Design

The study had a 2 (frame) 3 5 (stimulus duration) 3 5 (relative
value) mixed design. The frame (preferential vs. perceptual) varied
between participants and the other two factors varied within partic-
ipants. The relative value was the difference in the mean number
of dots between options (first minus second option: �50, �25, 0,
25, 50), made up of six combinations of option pairs. Stimulus du-
ration was manipulated such that the first option was visible 33%,
50%, 67%, or 75% of the total presentation time, over eight differ-
ent presentation sequences (see Section Table S7 in the online sup-
plemental materials).

Flash Stimulus

The flash stimulus was identical to that in Study 1 with the fol-
lowing modifications. First, the options were presented sequen-
tially in the center of a computer screen. Second, we presented the
two stimuli in either red or blue so that participants could easily
differentiate between the two options. The brightness of the two
colors was roughly equated in a pilot test by taking the average
values of four test participants who completed a psychophysical
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isoluminance procedure using heterochromatic flicker photometry
(Kaiser, 1991). The order of colors (blue or red option first) was
counterbalanced across trials. Third, the number of dots in each
option was generated from a Gaussian distribution truncated at 0
with a mean of 105, 130, or 155 dots and a standard deviation of
20 dots. We increased the range of mean values from Study 1
because pilot testing revealed that the sequential presentation
reduced discriminability slightly.

Procedure

The study was held over a single two-hour session. Similar to
Study 1, participants were randomly assigned to either the prefer-
ence or perceptual frame and received instructions for the flash
task with two central stimuli: a red pond and a blue pond. The
instructions were similar to Study 1. In the perceptual frame, par-
ticipants were asked to choose if the red or blue pond had more
fish on average, while in the preference frame, participants were
asked to choose if they preferred to fish from the red or blue pond.
In a trial, after displaying a central fixation dot for 500 ms, the

flash stimuli (the two, colored ponds) appeared in the center of the
screen in a sequential, alternating fashion (see Figure 8). For exam-
ple, participants would first view a stream of blue dots updated ev-
ery 50 ms, followed by a stream of red dots at the same update rate
and, on occasion, a second stream of blue dots. The color assigned
to the first or second stimulus was randomized between partici-
pants. They were told that the dots represented blue or red fish
from two ponds, so they could consider all blue fish, even if they
reappeared later, to be from the same pond. Participants were also
instructed to wait until all the fish were presented and that they

should immediately make their choice once the fish disappeared
and were replaced by a central fixation point. The fixation point
remained on the screen until participants pressed a key (labeled in
red or blue) to indicate their choice. Similar to Study 1, partici-
pants earned points by catching fish, which was displayed as feed-
back at the end of the trial. The points were aggregated and scaled
to generate a $1–5 performance bonus paid at the end of the ses-
sion. Participants in the perceptual frame (M = $4.92, SD = 0.15)
earned largely the same compensation compared to those in the
preferential frame (M = $4.94, SD = 0.10);MD =�0.02; 95% HDI
[�0.08, 0.05]).

As with Study 1, we removed trials where participants selected an
incorrect button (chose neither the first nor the second option). Con-
sistent with our previous work with the FGT (Pleskac et al., 2019), we
also removed trials with responses faster than .25 s. Responses faster
than this timing threshold show no sensitivity to the relative value and
were classified as guesses. The average number of removed trials
under these cutoffs was 1.1 (.12% total; SD = 2.2) per participant. To
minimize the chances that we included trials where participants were
distracted, we also removed trials with response times longer than 5 s
from all analyses. The average number of trials that exceeded the 5s
cutoff was 3.9 (0.44% total; SD = 6.2) per participant.

Results

Choice Behavior

Group-level psychometric functions show choice behavior for
each condition in Figure 9. The functions show that participants

Figure 8
Trial Schematic for Study 2

FIXATION 
(500ms)

TIME

FIXATION 
(UNTIL 
RESPONSE)

FEEDBACK 
(1000ms)

142

Note. After a central fixation, the two stimuli were presented in an alternating sequence. The stimuli were presented either with
one switch (blue–red, or red–blue, not shown) or two switches (blue–red–blue, as shown here, or red–blue–red, not shown). Each
stimulus was presented for a specific duration. A central white fixation point then appeared, prompting participants to respond.
After the response, an appropriate feedback message was provided for each decision frame. See the online article for the color ver-
sion of this figure.
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were likelier to choose the first option when it had more dots on
average. The psychometric function was again modeled with a
hierarchical four-parameter logistic function where the probabil-
ity of choosing the first option was a function of the relative
value (first–second). Similar to Study 1, we allowed the thresh-
old l and slope h parameters to vary between the decision frame
and relative duration of the first option. The parameters control-
ling the asymptote location and indexing the base rate of
responding (c and k) were allowed to vary between decision
frames but fixed between the duration manipulations (for a given
decision frame). We again examined two aspects of these psy-
chometric functions: thresholds and sensitivity (for group level
estimate and comparisons, see Table S8 in the online supplemen-
tal materials).
Threshold. Similar to the free-viewing study, we found that

participants were more likely to choose the option that was pre-
sented for a longer relative duration, manifested as a horizontal
shift in the psychometric function. For each step of change in the
relative duration there was on average an increase of 20.40 dots
[5.45, 39.31] in the threshold, l. Like the cue-based manipulation
in Study 1, the degree of shift in the threshold depended on the de-
cision frame. For instance, comparing the lowest (33%) and high-
est (75%) duration results in a credible shift (M = 6.42; 95% HDI
[2.24, 10.68]) in the threshold in the preferential frame (M =
39.31; 95% HDI [36.17, 42.67]) and in the perceptual frame (M =
32.89; 95% HDI [30.06, 35.46]). Across all changes in relative du-
ration, this shift in threshold was greater in the preferential frame,
indicating that viewing duration had a greater effect on choice in
the preferential frame (M = 3.51; 95% HDI [1.07, 5.84]).
Sensitivity. In terms of sensitivity, overall, the psychometric

function slopes were shallower compared to the free-viewing
study. This decrease in sensitivity was likely due to a more diffi-
cult task when the two options are sequentially presented, which
requires more memory and integration between stimulus presen-
tations. In contrast to the free-viewing study, the sensitivity in
terms of the slope of the psychometric functions at the thresholds
were not credibly different between decision frames (M =

�0.0009; 95% HDI [�0.0038, 0.0018]), suggesting that with
controlled viewing we removed differential sensitivity in dis-
criminating between the choice options across decision frames
(see Table S8 in the online supplemental materials).4,5

Summary

In Study 2, we directly controlled the viewing duration while
presenting the two options sequentially at fixation. Three major
findings emerged in this controlled viewing task. First, the effect
of stimulus duration on choice was larger in the preferential deci-
sion frame as captured by shifts in the choice threshold, suggesting
that while attention can modulate perception (Carrasco & Barbot,
2019), it has a further and specific impact on an option’s value rep-
resentation. Second, there was no difference in the sensitivity to
relative value between decision frames. Moreover, as response
times were controlled experimentally, there were no differences in
response times between decision frames. These results help rule
out possible differences in levels of information processing as
being responsible for the greater effect of attention on choice
thresholds in the preferential frame compared to the perceptual
frame. Third, as the relative duration of an option increased, the
likelihood of choosing it increased. This result is consistent with
other similar studies (Bird et al., 2012; Nittono & Wada, 2009),
implying that eye movement per se is not necessary for attention
to exert an effect on choice. Altogether these results support the
AIV hypothesis that paying attention to an option, manifested in a
longer looking time, does lead to liking by enhancing stimulus
value. To provide further support for this claim, we employed
computational models to help isolate how attention impacted the
underlying decision process.

Modeling the Effect of Attention on Evidence
Accumulation

We used a diffusion decision model (DDM; Busemeyer et al.,
2019; Ratcliff et al., 2016) to isolate how attention impacted
preferences. A DDM models decision making as a sequential
sampling process, where participants sequentially sample infor-
mation about the options and accumulate the information as evi-
dence to make a choice. The rate of evidence accumulation, d,
captures the direction and speed at which evidence accumulates
in the model. There is a starting point of the evidence, which
captures an initial bias toward one option or the other. During
an optional stopping procedure as in Study 1, where the time at
which a choice is made is determined endogenously, DDM
assumes that the choice is made when the quantity of accrued
evidence reaches a predetermined threshold. The location of the
upper threshold is specified by the threshold separation parame-
ter a, with the bottom threshold located at 0. During an

Figure 9
The Probability of Choosing the First Option Plotted Against the
Relative Value (First–Second)

Note. The data was conditioned by the decision frame (panels) and rela-
tive duration of the first option (colors). The solid-colored dots represent
the predicted choice proportions with the error regions indicating the 95%
HDIs of the proportions. See the online article for the color version of
this figure.

4We are not presenting response time results as the task used a cued
response. Thus, the recorded response time is less meaningful.

5 We also found evidence of a small recency effect in that participants
slightly preferred to choose the most recently viewed option. In the one-
switch condition, the posterior predicted likelihood of choosing the first
option in this condition was 0.47 [0.45, 0.50] in the preferential frame and
0.48 [0.46, 0.50] in the perceptual condition. But there was no difference
between decision frames in this order effect. See the online supplemental
materials for more details.
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interrogation protocol where the time of the choice is externally
determined, as in Study 2, the location of the evidence is com-
pared to a criterion and a choice is made accordingly.
This general evidence accumulation process provides a good

account of both perceptual (e.g., Ratcliff & Smith, 2004; Ratcl-
iff et al., 2016) and preferential (e.g., Busemeyer et al., 2019;
Busemeyer & Diederich, 2002) decisions (Pleskac et al., 2019;
Summerfield & Tsetsos, 2012). However, the data from both
the free and fixed viewing studies suggest that while attention
impacts both choices, there are also differences in how it
impacts choice in each decision frame. To examine the role of
attention in these two decision frames, we formalized the DDM
in terms of how eye gaze influences the evidence accumulation
process (Krajbich et al., 2010; Krajbich & Rangel, 2011; Smith
& Krajbich, 2019). According to these models, the rate of evi-
dence accumulation is a function of the difference in the values
of the two options. The value of the nonfixated option is dis-
counted during evidence accumulation. Formally, the value of
each option is specified by the mean number of dots, l, in each
option so that

d ¼ cðlfixated � h 3 lnonfixatedÞ þ e: (2)

where the parameter 0 , h , 1 discounts the value of the non-
fixated option, and c is a scaling constant. Following Cavanagh
et al. (2014), this hypothesis can be implemented as a linear
model, so that the drift rate is,

d ¼ m0 þ m1 3 ðgazeright 3 lright � gazeleft 3lleftÞ
þ m2 3 ðgazeleft 3 lright � gazeright 3 lleftÞ þ e: (3)

Formulated this way, positive values of d (d . 0) indicate
evidence of accumulation toward the right (or the first)
option, and negative values indicate accumulation toward the
left (or the second) option. The parameter m0 is the baseline
drift, and m1 and m2 determine the contribution of the fixated
and nonfixated options, respectively. The gaze variables spec-
ify the relative amount of fixation time for each option during
a trial—these are measured by eye tracking in Study 1 and by
the duration of presentation in Study 2. The relationship between
Equation 3 and Equation 2 can be seen by conditionalizing on when
the right or left option is fixated on. For instance, if the right option is
fixated on (gazeright ¼ 1; gazeleft ¼ 0), then Equation 3 can be writ-

ten as m1 3lright � m2 3 lleft where m1 = c and m2 = ch. Thus, the
degree to which the nonfixated option is discounted is the ratio of m1
and m2,

h ¼ m2=m1: (4)

Equations 2 and 3 captures one way to model the AIV hypoth-
esis with attention enhancing the value of an option (via dis-
counting of the unattended options). However, another way
attention could induce value is that attention could simply lead
to additional information to be accumulated independent of the
value of the options (Cavanagh et al., 2014). Therefore, we also
included an additive gaze component to the drift rate model, so
that,

d ¼ m0 þ m1 3 ðgazeright 3lright � gazeleft 3lleftÞ
þ m2 3 ðgazeleft 3 lright � gazeright 3lleftÞ
þ m3 3 ðgazeright � gazeleftÞ þ e: (5)

The drift rate coefficients m help determine how attention indu-
ces value. The parameters m1 and m2 determine how much the
accumulated value is enhanced by attending to an option. The pa-
rameter m3 determines the weight given to the independent contri-
bution of gaze to the drift rate. If m1 ¼ m2 ¼ 0 and m3 . 0, then
this reduces to a model where attention only induces additive
value independent of the options’ values. If m1 ¼ m2 > 0 and m3 =
0, then this reduces to a model where attention induces value
strictly by enhancing the value of the attended-to-option.

We fit this full DDM using Equation 5 to model the drift rate,
to both decision frames in the free-viewing and fixed-viewing
study. As the free-viewing study used an optional stopping pro-
cedure where the participant determined when to make a deci-
sion, we modeled this process as an accumulate-to-bounds
DDM. Thus, the model predicts both the choice and response
times. In contrast, the fixed-viewing study used an interrogation
procedure where the experimental protocol determined when a
decision was to be made. Therefore, the choices were modeled
as a signal detection process where a person accumulates evi-
dence and then examines if the evidence points to the first or sec-
ond option when called to make a choice. For the free-viewing
study, we used the proportion of time participants fixated on the
right option relative to the sum of the time they fixated on either
the left or right option to index relative gaze. For the fixed viewing
study, we use the relative duration that each option was shown as a
measure of relative gaze. The models were implemented within a
Bayesian hierarchical structure modeling choices (and response
times for the free-viewing study) at the individual participant level.6

For precise details, including model fits and model comparisons see
the online supplemental materials.

Study 1: Cued Free Viewing

We can use the parameters of the DDM to isolate different
causes for the change in choice and RT among the cuing condi-
tions (see Table 1). One explanation is that the cue biased the start-
ing point of evidence toward one choice or another. Indeed,
comparing the left cue with the right cue, there was a credible shift
in the start point for the preference frame (M = .310; 95% HDI
[.033, .584]) and a similar (but not credible) shift in the perceptual
frame (M = .247; 95% HDI [�.037, .522]). However, there is not
a credible difference between the preference and perceptual frames
in terms of the cue effect on the relative start point (M = .064;
95% HDI [�.334, .459]). This result would seem to rule out the
explanation that the greater effect of the cue in the preferential
frame was due to it having a greater impact on the initial start
point of the evidence accumulation process.

6 The supplementary materials also reports model fits for models
without the additive term (interactive model; Equation 2) and with only the
additive term (additive model). A consistent winner of the model
comparisons did not emerge, so we report the full model (Equation 5) in
the text as it is the most informative.
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A second means by which the attentional cue impacted
choice is via the evidence being accumulated. Recall that the
attentional cue also impacted what option participants fixated
on and how long they fixated on it. The DDM reveals that this
impact on information search behavior also shaped how evi-
dence was accumulated. To see this, we calculated the ratio of
the drift rate coefficients m1 and m2 to estimate the degree to
which the nonfixated option was discounted (h, see Equation 4).
There was credible discounting in both the perceptual (h =
.814; 95% HDI [.786, .842]) and preferential frames (h = .622;
95% HDI [.583, .660]). But the degree of discounting was
greater in the preferential frame (�.192; 95% HDI [�.242,
�.145]). Thus, attention to one option meant that the informa-
tion extracted from the unattended option was discounted rela-
tive to the attended option. This discounting happened to a
greater extent in the preferential frame than the perceptual
frame.
The DDM parameters offer two additional observations. First,

the drift coefficients m1 and m2 in the preference frame were credi-
bly lower than those in the perceptual frame, implying that for
both fixated and nonfixated options, participants extracted less in-
formation from the options to make a decision. Second, for both
decision frames m3 was credible (but not credibly different
between frames), indicating an additive contribution of gaze to the
drift rate.7

These modeling results again raise the question of whether the
impact of attention on valuation via the discounting of the unat-
tended option was driven largely by how participants freely moved
their eyes and allocated their attention to options as they made
their choice. Therefore, we fit an equivalent model to the fixed-
viewing study, which we turn to next.

Study 2: Fixed Viewing

During the fixed-viewing study, options were presented one
at a time for different durations. If the differences between the
perceptual and preference frame were largely due to differences
in how participants voluntarily controlled their eye movement
while searching for information, then they should largely van-
ish under this fixed viewing setting. However, we still observed
a greater shift in the psychometric thresholds in the preference
frame. The DDM reveals that this shift, similar to the free-

viewing study, is due to a greater discounting of the nonfixated
(not shown) option in the preference frame (h = 0.711; 95%
HDI [0.68, 0.742]) compared to the perceptual frame (h = 0.76;
95% HDI [0.73, 0.791]; Mdiff = �0.049; 95% HDI [�0.092,
�0.005]; see Table 2).8,9

Notably, the drift rate coefficients m1 and m2 were lower for both
the perceptual and preferential frames in the fixed-viewing study
compared to the free-viewing study. Moreover, there was less of a
difference between the perceptual and preference frames in the
fixed-viewing study. These differences between the studies explain
why there was an overall lower sensitivity to the relative value in
the fixed-viewing study and also a noncredible difference between
decision frames (see Figures 2 and 9). Finally, in the fixed-viewing
study, the additive contribution of gaze did not have a credible
effect on the drift rate for both preference and perceptual frames.
This difference between free and fixed viewing studies suggests
that the free allocation of gaze and/or an optional stopping response
process promotes a greater independent influence of the gaze on
drift rate. Such a difference may help explain the different contribu-
tions of this independent factor across studies (see Cavanagh et al.,
2014; Smith & Krajbich, 2019).

Table 1
Mean and 95% HDI Posterior Estimates of the Group-Level Parameters From Attention-Based DDM for the Free-Viewing Study 1

Parameter Preference Perceptual Preference vs. Perceptual

m0 (Baseline drift) 0.014 [�0.099, 0.121] 0.035 [�0.097, 0.159] �0.021 [�0.186, 0.152]
m1 (Fixated option) 2.44 [2.393, 2.487] 2.553 [2.515, 2.592] 20.114 [20.175, 20.053]
m2 (Nonfixated option) 1.518 [1.423, 1.611] 2.079 [2.012, 2.145] 20.561 [20.675, 20.442]
m3 (Additive contribution of gaze) 0.594 [0.413, 0.767] 0.392 [0.21, 0.574] 0.202 [�0.053, 0.456]
h (Between-trial drift variability) 0.321 [0.121, 0.518] 0.356 [0.158, 0.555] �0.036 [�0.328, 0.233]
bleft (Relative start point for left cue) 0.419 [0.23, 0.614] 0.448 [0.256, 0.648] �0.029 [�0.313, 0.245]
bcenter (Relative start point for center cue) 0.571 [0.363, 0.775] 0.596 [0.385, 0.796] �0.025 [�0.323, 0.266]
bright (Relative start point for right cue) 0.73 [0.549, 0.894] 0.695 [0.504, 0.87] 0.035 [�0.225, 0.295]
c (Between-trial start-point variability) 0.122 [0.1, 0.158] 0.122 [0.1, 0.158] 0 [�0.052, 0.054]
a (Threshold separation) 0.683 [0.44, 0.922] 0.711 [0.468, 0.962] �0.028 [�0.373, 0.321]
NDT0 (Relative nondecision time) 0.599 [0.566, 0.633] 0.599 [0.565, 0.631] 0 [�0.047, 0.048]

Note. Relative nondecision time is relative to the smallest response time observed. The bolded values indicate credible effects where the 95% HDI exclude 0.
DDM = diffusion decision model.

7 Model comparisons reported in the supplementary materials indicate,
in fact, the perceptual frame is better modeled where value and gaze each
have independent contributions to the drift rate, suggesting the discounting
of the nonfixated option was marginal (though credible) in the perceptual
frame. In contrast, a model that only included the interactive model
(Equation 2) better modeled the preference frame indicating that in the
preference frame, there was a greater discounting of non-fixated options.

8 In a second set of models, we allowed the relative duration of the
stimuli to impact the start point of the evidence accumulation, analogous to
how the attentional cue impacted the start point for the free-viewing study.
However, this model provided a worse fit to the data, suggesting the
relative duration primarily impacted the evidence accumulation. See
supplementary materials for further details.

9 In a third set of models, we examined whether the sequential
presentation impacted evidence accumulation because when the first option
was presented, participants did not know the value of the second option. To
reflect this, we parameterized a set of DDMs such that for the duration of
the first presentation, the drift was solely determined by the value of the
first option. Then for the second and third presentations, the drift was
determined as specified in Equations 3 and 5. These models provided
worse fits to the data than the ones presented here, suggesting the two
options were compared to accumulate evidence, perhaps via a buffer of
stored information.
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Summary

The computational modeling of the decision process via the
DDM helped reveal mechanisms through which attention
impacts the evidence accumulation process. Most importantly,
the models support the conclusion that the underlying mecha-
nism for looking-induced liking is via attention-enhancing option
valuation. They showed that attending to an option enhances the
value of the attended-to option and this attention-induced valua-
tion has a greater impact during preferential choice. The compu-
tational modeling also helped further rule out several alternative
explanations. There was no credible difference between decision
frames in terms of the relative start point and choice thresholds,
thus ruling out an explanation of the greater effects of attention
in the preferential frame as due to differences in levels of infor-
mation processing between the decision frames. Moreover, as we
observed the same effect of the attentional manipulations on
enhancing option valuation with and without eye movements, we
also can rule out the explanation that eye movement is the driv-
ing factor. Instead, the effect appears to be driven by the alloca-
tion of attention.

General Discussion

Do people grow to like what they attend to? Answering this
question has important practical implications helping explain why
products that attract more attention are more likely to be chosen
(Chandon et al., 2009). It could also be used to help improve deci-
sions such as in nudging healthy food choices (Hare et al., 2011;
Leng et al., 2017). These behavior-level considerations aside,
answering this question also requires us to investigate the funda-
mental role of attention in the construction of preference (Mor-
mann & Russo, 2021; Orquin & Loose, 2013; Weber & Johnson,
2009). By manipulating attention both with a peripheral cue and
differential exposure of the potential options, in combination with
eye tracking and computational modeling, our study provides con-
verging evidence for the AIV hypothesis that attention increases the
value of an option.

Key Findings and Their Relationship to ExistingWork

The support for the AIV hypothesis comes from several key
findings. First, a task-irrelevant peripheral cue biased choice to-
ward the cued option (see Figure 2). The cue was designed to elicit
an involuntary shift of attention and as such allowed us to manipu-
late attention in an unobtrusive way. Second, the cue influenced

information search pattern during the trial, such that it shifted the
initial fixation toward the cued location (see Figure 4) and
increased the overall dwell time on the cued option (see Figure 6).
These cuing effects were present in both the perceptual and prefer-
ential decision frames but were more pronounced for the preferen-
tial decision. Related to these findings, we also observed a
stronger gaze variability and gaze cascade effect for preferential
than perceptual decision frame (Figure 5 and 7). Third, our com-
putational modeling analyses revealed that a DDM that incorpo-
rates visual attention can account for our behavioral data. In
particular, the modeling results suggest that attention can have
both additive and multiplicative effects on valuation, and it enhan-
ces the value of the attended option.

While there is evidence consistent with the claim that people
like what they look at (Armel et al., 2008; Milosavljevic et al.,
2012; Pärnamets et al., 2015; Reeck et al., 2017; Smith & Kraj-
bich, 2019; Towal et al., 2013; Zoltak et al., 2018), there is also
evidence that people look at what they like (Anderson et al., 2011;
Anderson & Yantis, 2013; Della Libera & Chelazzi, 2009; Naval-
pakkam et al., 2010). In general, these two processes (looking
induced liking and vice versa) can easily become intertwined in
any task such that it is difficult to pinpoint the direction of causal
influence. By manipulating attention on a trial-by-trial basis, our
study provides strong evidence for a critical component of atten-
tion-valuation interaction—the AIV hypothesis.

Our results help untangle explanations of phenomena like the
gaze-cascade effect. One explanation of this effect that has been
put forth is a self-reinforcing, positive feedback loop, composed of
looking induced liking and liking induced looking (Shimojo et al.,
2003). However, as we discussed earlier, computational work sug-
gests gaze cascade effect can emerge from an evidence accumula-
tion model that uses a relative stopping rule where the decision to
stop is based on the relative evidence for one option over the
other(s), and more weight for evidence accumulated from the fix-
ated option as in the AIV hypothesis (Mullett & Stewart, 2016).
Our experimental and modeling work supports the latter explana-
tion. We showed that an evidence accumulation model gives a
good account of both preferential and perceptual decisions. We
also established both with behavioral analyses and computational
modeling that there was discounting of the nonfixated option and
that the discounting was greater in the preferential option. Consist-
ent with these results we observed a gaze cascade in both the pref-
erential and perceptual frames, but the effect was stronger in the
preferential frame. Zooming out to the full-time course of the deci-
sion process, this differential effect of attention on preferential

Table 2
Mean and 95% HDI Posterior Estimates of the Group-Level Parameters From Attention-Based DDM for the Fixed-Viewing Study 2

Preference Perceptual Difference

m0 (Baseline drift) �3.739 [�4.902, �2.525] �3.599 [�4.942, �2.353] �0.140 [�1.888, 1.651]
m1 (Fixated option) 0.545 [0.524, 0.566] 0.590 [0.566, 0.613] 20.045 [20.077, 20.014]
m2 (Nonfixated option) 0.387 [0.368 0.407] 0.449 [0.426, 0.472] 20.061 [20.092, 20.032]
m3 (Additive contribution of gaze) �0.062 [�2.024, 1.858] �0.102 [�2.078, 1.809] 0.040 [�2.690, 2.787]
r (Within-trial variability) 0.253 [0, 0.633] 0.247 [0, 0.611] 0.006 [�0.524, 0.561]
h (Between-trial drift variability) 0.016 [0, 0.047] 0.01 [0, 0.028] 0.007 [�0.027, 0.046]

Note. The within-trial variability parameter measures the degree to which other factors entered influenced evidence accumulation while the between-trial
drift variability measures how much the drift rate varied from trial to trial. The former proved necessary to include in modeling the choices from the fixed-
viewing study. The bolded values indicate credible effects where the 95% HDI exclude 0. DDM = diffusion decision model.
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decisions in both early and late time periods within a trial provide
converging evidence of the unique contribution of attention on the
value representation over and above its effects on perception.
In general, this dissociation between preference and perception

is important because attention can shape early perception to
enhance apparent salience so that an enhanced perceptual repre-
sentation could lead to preference. Previous work has not consid-
ered this possibility and as such, their results in fact do not
pinpoint a specific role of attention on valuation. By comparing
the preferential and perceptual decision frames on the same stimu-
lus display, our results demonstrated that attention had a larger
impact on preferential than perceptual choice. Our results thus
support the AIV hypothesis in showing a specific role of attention
on valuation above and beyond its influence on perception.
This differential impact of attention on preferential and percep-

tual choice also speaks to the general question of the commonal-
ities and differences between these two types of decisions (Dutilh
& Rieskamp, 2016; Pleskac et al., 2019; Summerfield & Tsetsos,
2012; Zeigenfuse et al., 2014). A comprehensive comparison
between these two types of decisions is beyond the scope of this
article. But our results here support two general conclusions. The
first conclusion is that a common decision process is used to make
both preferential and perceptual decisions. This conclusion is sup-
ported by our finding that both decisions are well accounted for by
a sequential sampling process where people accumulate informa-
tion over time to determine a choice. But this brings us to the sec-
ond conclusion. According to our results, the properties of the
information search and the accumulation process are somewhat
different between the two types of decisions. Obviously, in many
cases, the information can and will differ between these two types
of decisions. But here we show that even if we equate this infor-
mation as best as possible, we still observed differential effects of
attention.
Nevertheless, we caution that there are limitations to this com-

parison between decision frames and more work is needed to iso-
late the causal factors that lead to these differences. One possible
reason for this difference is that the feedback and payoff between
the two frames are also different (Dutilh & Rieskamp, 2016). In
the preferential frame, the feedback and payoff was based on a sin-
gle sample from an option, which captures a common property of
preferential decisions where the outcome is uncertain (Luce &
Raiffa, 1957). By comparison, in the perceptual frame, the feed-
back and payoff were based on the mean of the underlying distri-
bution. Thus, a choice was either correct or incorrect (Hanks &
Summerfield, 2017). It is possible that some aspects of the feed-
back and payoff structure also help drive the process-level differ-
ences we have observed. As we outline later, a more compelling
mechanistic explanation may rest in the additional valuation proc-
esses needed to make preferential decisions. We would also high-
light that the difference between these two types of decisions is
more a difference in degree. For instance, in the perceptual frame,
participants are rewarded for accurate performance. This proce-
dure is consistent with many perceptual decision-making tasks,
but it does mean that some value-based processing is being used.
In a similar way, the feedback could be adjusted. For instance, a
perceptual frame might ask participants to choose the option with
the higher average reward or to identify the option that they pre-
dict will have the highest number of dots in the next draw. We sus-
pect that changes that make one frame more similar to the other

will also shape choice behavior to be more similar. Overall, we
believe this direct comparison between preference and perceptual
decision making is a fruitful comparison. After all, many advances
in our understanding of preferential decision making have come
by reasoning via analogy from perception (Kahneman, 2003) and
vice versa (Masin et al., 2009).

Our results are also informative on whether motor movement
per se plays a causal role in the effect of attention on preferential
choice. Earlier studies found that without eye movement, there is a
lack of exposure duration effect (Shimojo et al., 2003; Simion &
Shimojo, 2006), suggesting that eye movement prompts the deci-
sion maker to align their preferences to the motor movement itself
(Bem, 1967; Fazio et al., 1977). However, this effect has been
controversial as subsequent studies found that eye movement is
not necessary for an exposure duration effect (Bird et al., 2012;
Nittono & Wada, 2009). Results from our Study 2 agree with these
latter studies and suggest that visual attention to an option—
whether it be due to an eye movement or not—results in magnify-
ing the value of the option.

Potential Mechanisms of AIV

What are the underlying mechanisms for the observed attention-
induced valuation effect? Our computational modeling results pro-
vide some hints regarding possible mechanisms. The model
assumes that people accumulate the differences in value between
the two options in a sequential sampling process, and, critically,
attention enhances the valuation of the attended option by dis-
counting the unattended option. Our model also allowed an inde-
pendent, additive, contribution of attention to valuation but its
impact was not consistently observed—present in Study 1 but
absent in Study 2. The presence of this independent contribution
has been controversial (see Cavanagh et al., 2014; Smith & Kraj-
bich, 2019). Our results suggest that motor movement during free
viewing might promote such an independent contribution. More
relevant for the current discussion, regarding the difference
between the two decision frames, the most consistent finding was
a stronger discounting of the unattended option in the preferential
than perceptual decision frame. Here, we propose that these effects
can be understood within a computational framework based on
normalization.

Broadly speaking, normalization is a process in which the men-
tal representation of an item is scaled by its spatial and temporal
neighbors, usually in a divisive manner such that the representa-
tions mutually inhibit each other. Although first proposed to
explain neuronal activity in the primary visual cortex (Heeger,
1992), a normalization mechanism can explain behavioral and
neural measurements across a wide range of sensory and cognitive
domains, implying that normalization may be a canonical neural
computation in the brain (reviewed in Carandini & Heeger, 2012).
Relevant to the current study, attentional effects in the visual cor-
tex can also be modeled as modulating normalization such that the
attended option receives a gain modulation which further inhibits
the unattended option via normalization (J. Lee & Maunsell, 2009;
Reynolds & Heeger, 2009). Thus, previous literature provides
strong evidence for the role of normalization in perceptual proc-
essing and attentional modulation.

At the same time, context-dependent valuation among choice
options is often observed and can be naturally explained by a
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framework of value normalization (reviewed in Louie & Glimcher,
2012; Rangel & Clithero, 2012). Indeed, neuroeconomic studies
have found normalized neural representations of value in a number
of key brain areas involved in decision making, such as the orbito-
frontal cortex, anterior cingulate cortex, and posterior parietal
cortex (Cai & Padoa-Schioppa, 2012; Louie et al., 2011; Padoa-
Schioppa, 2009). Since normalization essentially accentuates the
difference among competing representations, our implementation
of a discounting of the unattended item in the DDM may be
thought of as a manifestation of normalization.
Given the normalization framework, why is there a stronger dis-

counting (or normalization) in the preferential than the perceptual
frame in our task? We speculate that this result is due to the ubiq-
uitousness of normalization in the brain (Carandini & Heeger,
2012). It is possible that attention may modulate both sensory nor-
malization and value normalization. Under this scenario, percep-
tual decisions are influenced by sensory normalization, whereas
preferential decisions are influenced by both sensory and value
normalization (because it receives input from perceptual analysis).
Thus, the latter would exhibit a larger attentional modulation. We
note a few studies have reported that neural responses in several
areas of the reward circuit are modulated by both option value and
eye gaze (Lim et al., 2011; McGinty et al., 2016), potentially con-
sistent with our conjecture of attention-modulated value normal-
ization. However, these studies did not include a perceptual
condition to isolate the effect of attention on valuation. Altogether
we admit this normalization account is speculative, but we hope it
will stimulate further research into the mechanisms of attention-
value interaction. Certainly, more work is needed to disentangle
the effect of attention on perception and its effect on valuation in
both behavior and neural responses.

Conclusion

William James (1890/1950) once wrote the following:

Millions of items of the outward order are present to my senses which
never properly enter into my experience. Why? Because they have no
interest for me. My experience is what I agree to attend to. Only those
items which I notice shape my mind—without selective interest, expe-
rience is an utter chaos. Interest alone gives accent and emphasis, light
and shade, background and foreground intelligible perspective, in a
word. (p. 168)

Our results suggest that attention not only accents and emphasizes
but also actively shapes the value people place on options as they
construct a preference.
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